A boundary blow-up problem with a nonlocal reaction

Jorge García-Melián*, José C. Sabina de Lis

Department of Analysis Matemático, Universidad de La Laguna, C/ Astrofísico Francisco Sánchez s/n, 38271 – La Laguna, Spain
Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y Fotónica, Facultad de Física, Universidad de La Laguna C/. Astrofísico Francisco Sánchez s/n, 38203 – La Laguna, Spain

Abstract

In this paper we deal with several kinds of boundary blow-up problems whose main feature is exhibiting a nonlocal reaction term which depends on the integral of some function of the concentration \(u \). As a representative of such problems we consider

\[
\begin{align*}
\Delta u &= \lambda \frac{f(u)}{1 + \frac{1}{|\Omega|} \int_{\Omega} g(u)} \quad \text{in } \Omega \\
u &= \infty \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded smooth domain of \(\mathbb{R}^N \) and the boundary condition is understood as \(u(x) \to \infty \) when \(\text{dist}(x, \partial \Omega) \to 0 \). We find necessary and sufficient conditions for the existence of positive solutions. In some cases, we also obtain uniqueness or multiplicity of solutions. Other classes of nonlocal dependence of the reaction term are also discussed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of the present work is to analyze the effect of a reaction term which is of nonlocal nature, on several kinds of boundary value problems subject to a singular condition. As a first step in this direction, we consider the nonlinearity

\[
\lambda \frac{f(u)}{a + b \int_{\Omega} g(u)}
\]

where \(a, b > 0, f \) is an increasing positive function and \(g \) is positive and monotone for large \(u \). Such a reaction term arises when modeling Ohmic heating (see [1] where a Dirichlet problem is studied under the choice \(f = g \)). Since the parameters \(a \) and \(b \) will play no essential role in our discussion, for simplicity we are setting \(a = 1 \) and \(b = \frac{1}{|\Omega|} \cdot |\Omega| \) the Lebesgue measure of \(\Omega \). Specifically, our first model will consist in the following nonlocal boundary blow-up problem

\[
\begin{align*}
\Delta u &= \lambda \frac{f(u)}{1 + \frac{1}{|\Omega|} \int_{\Omega} g(u)} \quad x \in \Omega \\
u &= \infty \quad x \in \partial \Omega,
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^N \) is a bounded and smooth enough domain, and the real number \(\lambda \) will be considered as a positive parameter. Regarding problem (1.1), the functions \(f \) and \(g \) will be assumed to satisfy the following smoothness and monotonicity assumptions:

\[
f \text{ is locally Lipschitz and increasing in } [0, \infty), \text{ and } f(0) = 0 \quad (Hf)
\]

* Corresponding author.
E-mail addresses: jgarmel@ull.es (J. García-Melián), josabina@ull.es (J.C. Sabina de Lis).

0362-546X/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
and
\[g \text{ is continuous in } [0, \infty), \text{ and there exists } t_0 \text{ such that } g \text{ is monotone and positive for } t \geq t_0. \] (Hg)

We mention that condition (Hf_1) is typical when dealing with boundary blow-up problems. As outstanding cases to be examined with more detail in this work we have \(f(t) = t^p \) for \(p > 1 \) and \(f(t) = e^t \) (the latter, not falling exactly in the scope of (Hf_1), will be separately studied in Section 6).

Our second example of a nonlocal boundary blow-up problem arises in population dynamics and takes the form
\[
\begin{cases}
\Delta u = \lambda u \left(\frac{1}{|\Omega|} \int_{\Omega} g(u) \right) u^{p-1} - 1 & x \in \Omega \\
u = \infty & x \in \Omega,
\end{cases}
\] (1.2)

with \(\Omega \subset \mathbb{R}^N \) as above, \(p > 1 \) and \(g \) is increasing, positive, \(g(0) = 0 \) and \(g(u) \to \infty \) as \(u \to \infty \). In fact, consider an animal species confined in a medium \(\Omega \) whose density is given by \(u(x) \) and having a natural growth rate \(\lambda \). Due to a limitation in the available resources the species is subject to self control which is measured by \(K \) (in principle, \(K \) may also depend on \(u \)). If there is, say, a constant immigration flow through \(\partial \Omega \) whose intensity is measured by a parameter \(\mu \), then a model problem providing the equilibrium population \(u \) could be (see for instance Chapter 11 in [2], Chapter 2 in [3] for a further detailed analysis):
\[
\begin{cases}
\Delta u = \lambda u(Ku^{p-1} - 1) & x \in \Omega \\
B(u, \mu) = 0 & x \in \partial \Omega.
\end{cases}
\] (1.3)

The boundary operator could take either of the options \(B(u, \mu) = u - \mu \) (Dirichlet), \(B(u, \mu) = \frac{\partial u}{\partial \nu} - \mu u \) (Neumann) or \(B(u, \mu) = \frac{\partial u}{\partial \nu} - \mu u \) (Robin). A natural possible way of dependence of the self regulation \(K \) on \(u \) is through the average population \(\frac{1}{|\Omega|} \int_{\Omega} u \) (see [4] for related ideas). The larger the population average is, the smaller the carrying capacity becomes. Therefore, problem (1.2) furnishes the limit profile of the population as the immigration pressure \(\mu \to \infty \) (see Remark 6(ii)). In this case the functional \(K \) has been chosen under the general form
\[
K(u) = 1 + \frac{1}{|\Omega|} \int_{\Omega} g(u).
\]

There are a great deal of works devoted to the subject of reaction–diffusion equations equipped with nonlocal reaction terms. See for instance [5] (and references therein), [6] (Chapters 2, 3, 8) for elliptic and parabolic equations and systems with nonlocal reactions terms and [7] (Chapter V) for parabolic equations. However, it is our belief that boundary blow-up problems with a nonlocal reaction have never been treated before in the literature.

On the contrary, the local problem
\[
\begin{cases}
\Delta u = f(u) & \text{in } \Omega \\
u = \infty & \text{on } \partial \Omega
\end{cases}
\] (1.4)

has been extensively studied in all of its relevant strands: existence and uniqueness of solutions, multiplicity, asymptotic behavior of solutions near the boundary, convexity, symmetry, etc. Among the many available works on the subject, we refer the reader to the pioneering papers [8–12] and to the review [13]. See also a more updated list of references in [14] or [15].

Assume that \(f \) satisfies hypothesis (Hf_1). Then, one of the earliest known features of problem (1.4) is that a necessary and sufficient condition for existence of positive solutions is
\[
\int_A \frac{1}{\sqrt{F(t)}} dt < \infty \quad (K0)
\]
for some \(A > 0 \), where \(F(t) = \int_0^t f(\tau) d\tau \) (see [10,11] and also [16]). This condition is nowadays usually known as the Keller–Osserman condition.

Let us return now to problems (1.1) and (1.2). By a solution to either of such problems we mean a function \(u \in C^2(\Omega) \) such that \(g(u) \in L^1(\Omega) \), that point-wise verifies the corresponding equation in (1.1) or (1.2) and \(u(x) \to \infty \) as \(d(x) := \text{dist}(x, \partial \Omega) \to 0 \). Our aim is to determine necessary and sufficient conditions so that (1.1) and (1.2) have positive solutions for some range of \(\lambda \)'s. Since both problems share fundamental features, we are confining ourselves in the sequel to describe the main results on (1.1). A detailed account on (1.2) and related problems will be postponed to Section 6.

Our first result shows that the Keller–Osserman condition (K0) is necessary for the existence of positive solutions to (1.1). Moreover, there is a second restriction, which is a sort of a coupling condition between \(f \) and \(g \), which needs to be satisfied. It takes the form
\[
\int_A \frac{g(t)}{\sqrt{F(t)}} dt < \infty \quad (1.5)
\]
for some positive \(A \).
Theorem 1. Assume f and g verify the assumptions (H_f) and (H_g), respectively. If problem (1.1) admits a positive solution for some $\lambda > 0$ then:

(a) $1 + \frac{1}{|\Omega|} \int_\Omega g(u) > 0$;

(b) f verifies condition (KO);

(c) g verifies condition (1.5).

More precisely, we have:

It is natural to ask whether conditions (H_f), (KO), (H_g) and (1.5) are also sufficient for the existence of positive solutions to (1.1). Existence of solutions is intimately connected with the existence of positive solutions to

$$\begin{cases}
\Delta u = \alpha f(u) & \text{in } \Omega \\
u = \infty & \text{on } \partial \Omega
\end{cases}$$

(1.6)

for $\alpha > 0$ (see (6.6) for the auxiliary problem corresponding to (1.2)), and their behavior with respect to α. Thus, we are assuming a situation where (1.6) has a unique positive solution for every $\alpha > 0$. This is the case, for instance, if f verifies there exists $p > 1$ such that $f(t)/t^p$ is increasing for large t (H_f^2) (see [17]). Under this additional condition on f, it is a consequence of our results that positive solutions to (1.1) exist at least in an interval of the form (λ_0, ∞) for some $\lambda_0 > 0$ (see Remark 5). Notice in addition that (H_f^2) already entails condition (KO).

We are also interested in giving conditions under which we can exactly determine the set Λ of values of λ for which solutions do exist. For this aim, we further require that f satisfies

$$0 < \lim_{t \to \infty} \frac{f(t)}{\sqrt{2F(t)}} \int_t^\infty \frac{1}{\sqrt{2F(s)}} \int_t^\infty \frac{1}{\sqrt{2F(t)}} < \infty.$$

(Hf$_3$)

On the other hand, we also show that (H_f^1) may be replaced by a condition of a different nature. Namely

$$\frac{\int_t^\infty (F(s) - F(t))^{-1/2} ds}{\int_t^\infty (F(s))^{-1/2} ds} \leq C,$$

(1.7)

for $t \geq A$. For future reference, we are using a shortened version of (1.7) where F_t will stand for $F(t)$.

Both (H_f^2) and (1.7) are verified by the canonical examples $f(t) = t^p$, $p > 1$, and $f(t) = e^t$. They also hold provided, for instance, that $f(t) \sim t^p$ at infinity, or more generally that f is a function of regular variation at infinity of index $p > 1$ (see [18,19] and Remark 3(iii) and (iv)). Nevertheless, it should be observed that neither (1.5) nor (H_f^1) (alternatively (1.7)) are required in case g is bounded.

We next state our main existence result where it is found that, depending on the value of $g(0)$, the set Λ is the interval $(0, \infty)$ or a finite interval $(0, \lambda^*)$. In this last case, we have more than one solution for some values of λ (see the bifurcation diagrams in Fig. 1).

Theorem 2. Assume f verifies the assumptions (H_f^1), (H_f^2) and g verifies (H_g). In case g is not bounded suppose it fulfills (1.5) while f satisfies either condition (H_f^2) or (1.7). Then

(a) If $g(0) > -1$, problem (1.1) admits a positive solution for every $\lambda > 0$.

(b) If $g(0) < -1$, there exists $\lambda^* > 0$ such that problem (1.1) admits at least two positive solutions for $\lambda \in (0, \lambda^*)$, at least one positive solution if $\lambda = \lambda^*$ and no positive solutions if $\lambda > \lambda^*$.

Remark 1. It follows from the proof of Theorem 2 that solutions u_λ for large λ satisfy in case (a) $\min_{\Omega} u_\lambda \to 0$ as $\lambda \to \infty$, while solutions u_λ with small λ verify $\min_{\Omega} u_\lambda \to \infty$ as $\lambda \to 0$. Similarly, in case (b) there is a large solution u_λ^+ such that $\min_{\Omega} u_\lambda^+ \to \infty$ as $\lambda \to 0$ while another solution u_λ^* exists verifying $\min_{\Omega} u_\lambda^* \to c$ as $\lambda \to 0$ for a certain positive constant c.
The conclusions of Theorem 2 can be attained by removing the extra conditions \((H_f)_3\) or \((1.7)\) on \(f\) but restricting instead the growth of \(g(t)\) for large \(t\). To this purpose in our next statement it will be assumed that
\[
g(t) = o(t^{p-1}) \quad t \to \infty, \tag{1.8}
\]
where the exponent \(p\) is the one in \((H_f)_2\). Notice that condition \((H_f)_2\) together with \((1.5)\) already entail
\[
g(t) = o\left(t^{\frac{p-1}{2}}\right) \quad t \to \infty.
\]
Thus \((1.8)\) is a genuine restriction only when \(1 < p \leq 3\).

Theorem 3. Assume that \(f\) satisfies \((H_f)_1\), \((H_f)_2\) and \(g\) satisfies \((H_g)\). In case \(g\) is not bounded for large \(t\) suppose \(g\) fulfills \((1.5)\) together with \((1.8)\). Then, all assertions of Theorem 2 hold true.

We are now concerned with the question of determining the exact multiplicity of positive solutions of \((1.1)\) for all values of \(\lambda\). For this aim, we restrict ourselves to the fundamental example of the nonlinearity \(f(t) = t^p, p > 1\). That is, we are dealing with the problem
\[
\begin{cases}
\Delta u = \lambda u^p & x \in \Omega \\
u = \infty & x \in \partial \Omega
\end{cases}
\tag{1.9}
\]
and we are assuming that \(g\) verifies \((H_g)\) and \((1.5)\). As usual in uniqueness results, the function \(g\) is asked to be more regular.

Theorem 4. Assume \(g \in C^1([0, \infty])\) verifies \((H_g)\) and \(g(0) > -1\). If in addition there exist \(\theta < \frac{p-1}{2}\) and \(M > 0\) such that
\[
|g'(t)| \leq M t^\theta \quad \text{for large } t, \tag{1.10}
\]
then there exists \(\lambda^* > 0\) such that problem \((1.9)\) has a unique positive solution for \(\lambda \geq \lambda^*\). Moreover, if
\[
g(t) = \frac{t^{p-1}}{t^p} \quad \text{is decreasing for } t > 0 \tag{1.11}
\]
then the positive solution to \((1.9)\) is unique for every \(\lambda > 0\).

Remark 2. Observe that the restriction of \(\theta\) in condition \((1.10)\) is somehow optimal. Indeed, the function \(g(t) = t^{\frac{p-1}{2}}\) does not even meet condition \((1.5)\) with \(f(t) = t^p\).

Corollary 5. Let \(g(t) = t^q\) for \(q \geq 1\). Then problem \((1.9)\) admits a solution for some \(\lambda\) if and only if \(q < \frac{p-1}{2}\). In that case, there exists a unique positive solution for every \(\lambda > 0\).

The proofs rely on the naive observation that solutions to \((1.1)\) and \((1.2)\) and other related nonlocal problems, are solutions to \((1.6)\) – or suitable two-parametric variants of this problem – when parameters \(\alpha, \lambda\), are appropriately chosen. This amounts to solving an equation of the form \(H(\lambda, \alpha) = \alpha\), where \(H\) depends on \(g\) and the unique solution to the auxiliary problem. In the case of \((1.1)\), say, a detailed knowledge on how the solution \(u_\alpha\) to \((1.6)\) varies with \(\alpha\) is required. Of special importance is the behavior when \(\alpha \to \infty\) (which has already been considered in \([20]\)) and when \(\alpha \to 0\). We analyze the latter, and it is precisely there where either conditions \((H_f)_3\) or \((1.7)\) are needed.

The paper is organized as follows: in Section 2 we gather some preliminary results related to problem \((1.6)\), some of them already known. Section 3 is dedicated to the proof of Theorem 1, while Sections 4 and 5 deal with the proofs of Theorems 2–4. Section 6 is devoted to the analysis of \((1.2)\) and further classes of nonlocal boundary blow-up problems.

2. Preliminaries

In this section we collect some properties of positive solutions to the boundary blow-up problem
\[
\begin{cases}
\Delta u = af(u) & x \in \Omega \\
u = \infty & x \in \partial \Omega
\end{cases} \tag{2.1}
\]
where \(\alpha > 0\). Under fairly general conditions on the nonlinear term, this problem admits a positive solution. But we are also interested in the uniqueness issue and in the boundary behavior of solutions.

Assume \(f\) verifies conditions \((H_f)_1\) and \((KO)\). It then makes sense to define the functions
\[
\psi(t) = \frac{1}{\sqrt{2}} \int_t^\infty F^{-1/2} \quad t > 0,
\]
and \(\phi(t) = \psi^{-1}(t)\) (the inverse of \(\psi\)). It is readily checked that \(u(t) = \phi(\sqrt{\alpha}t)\), is the unique positive solution to the one-dimensional problem
\[
\begin{cases}
u'' = af(u) & x > 0 \\
u(0) = \infty.
\end{cases}
\]
The next theorem, dealing with existence and uniqueness of problem (2.1) is well-known. We refer to [10,11,16] for the existence part, [21,16] for the asymptotic behavior and [17] for uniqueness.

Theorem 6. Assume \(f \) verifies the hypotheses \((H_{f_1})\) and \((KO)\). Then problem (2.1) has at least a positive solution \(u_\alpha \) for every \(\alpha > 0 \). Moreover, the boundary behavior of all solutions \(u \) is given by

\[
\lim_{d(x) \to 0} \frac{\psi(u(x))}{\sqrt{\alpha d(x)}} = 1. \tag{2.2}
\]

If in addition \(f \) verifies \((H_{f_2})\) then the solution \(u_\alpha \) is unique and it verifies:

\[
\lim_{d(x) \to 0} \frac{u_\alpha(x)}{\phi(\sqrt{\alpha d(x)})} = 1. \tag{2.3}
\]

From now on we always assume that problem (2.1) has a unique positive solution, and it will be denoted throughout by \(u_\alpha \). Our next step is analyzing the dependence of this solution by varying \(\alpha \). The first result in this line is an direct consequence of comparison and uniqueness.

Lemma 7. Assume \(f \) verifies conditions \((H_{f_1})\) and \((H_{f_2})\). Then the unique solution \(u_\alpha \) of problem (2.1) is decreasing and continuous in \(\alpha \), with values in \(C^2_{\text{loc}}(\Omega) \).

Proof. If \(0 < \alpha < \beta \), then clearly \(u_\alpha \) is a supersolution to the problem

\[
\begin{aligned}
\Delta u &= \beta f(u) \quad \text{in } \Omega \\
u &= 0
\end{aligned}
\]

for an arbitrary \(n \in \mathbb{N} \). It follows by comparison that \(u_\alpha \geq u_{\beta,n} \), where \(u_{\beta,n} \) is the unique solution to (2.4). Since \(u_{\beta,n} \to u_\beta \) as \(n \to \infty \), we arrive at \(u_\alpha \geq u_\beta \), and the strong maximum principle implies \(u_\alpha > u_\beta \) in \(\Omega \).

Now let \(\alpha_n \to \alpha > 0 \). For a small enough positive \(\varepsilon \) we have \(\alpha - \varepsilon \leq \alpha_n \leq \alpha + \varepsilon \) for large \(n \), so that, by monotonicity, \(u_{\alpha + \varepsilon} \leq u_{\alpha_n} \leq u_{\alpha - \varepsilon} \) in \(\Omega \). This implies that the sequence \(u_{\alpha_n} \) is locally uniformly bounded, and thus a standard bootstrap gives that, for a subsequence, \(u_{\alpha_n} \to \bar{u} \) in \(C^2_{\text{loc}}(\Omega) \). Then clearly \(\Delta \bar{u} = \alpha f(\bar{u}) \) in \(\Omega \), and since \(\bar{u} \geq u_{\alpha + \varepsilon} \), we also have \(\bar{u} = \infty \) on \(\partial \Omega \). Hence \(\bar{u} \) is a solution to (2.1), and uniqueness implies \(\bar{u} = u_\alpha \). Thus \(u_{\alpha_n} \to u_\alpha \) in \(C^2_{\text{loc}}(\Omega) \), and since the sequence \(\alpha_n \) is arbitrary the continuity is proved. \(\Box \)

Our next ingredient is the precise behavior of \(u_\alpha \) when both \(\alpha \to \infty \) and \(\alpha \to 0 \). More precisely, we need that the limits in (2.2) and (2.3) are uniform in \(\alpha \). It turns out that this has been already proved in [20] for large values of \(\alpha \). We remark that an analysis of the proofs there reveals that the differentiability condition that is assumed on \(f \) is not necessary. Remember that we are denoting \(d(x) = \text{dist}(x, \partial \Omega) \).

Theorem 8. Under the assumptions of Lemma 7 let \(u_\alpha \) be the unique positive solution to (2.1). Then for every \(\varepsilon > 0 \) there exists \(\alpha^* > 0 \) such that if \(\alpha \geq \alpha^* \)

\[
u_\alpha(x) \leq \max\{\phi(\sqrt{\alpha}(1 - \varepsilon)d(x)), \varepsilon\}
\]

\[
in \Omega.
\]

In particular, \(u_\alpha \to 0 \) uniformly in compact subsets of \(\Omega \) as \(\alpha \to \infty \).

We now deal with the behavior of \(u_\alpha \) as \(\alpha \to 0 \). We remark that there is an essential difference with that of the previous theorem. Namely, since the solution \(u_\alpha \) is expected to go to infinity uniformly in \(\Omega \), the behavior of \(f \) at infinity is relevant for obtaining this behavior. In Section 1, two alternative conditions governing such behavior were presented. In our next result, we impose the first one, i.e. condition \((H_{f_1})\).

Theorem 9. Assume \(f \) verifies \((H_{f_1})\), \((H_{f_2})\) and \((H_{f_3})\). Let \(u_\alpha \) be the unique positive solution to (2.1). Then there exists \(\alpha_0 \) and positive constants \(C_1, C_2 \) such that for \(0 < \alpha \leq \alpha_0 \):

\[
\phi(C_1\sqrt{\alpha d(x)}) \leq u_\alpha(x) \leq \phi(C_2\sqrt{\alpha d(x)}) \quad \text{in } \Omega.
\]

In particular, \(u_\alpha \to \infty \) uniformly in \(\Omega \) as \(\alpha \to 0 \).

Proof. To show the upper inequality, we construct a supersolution. Let \(z \) be the unique solution to \(-\Delta z = 1 \) in \(\Omega \) with \(z = 0 \) on \(\partial \Omega \). For a suitable \(\varepsilon > 0 \) we let

\[
\tilde{u}(x) = \phi(\varepsilon \sqrt{\alpha z}(x)).
\]

A straightforward calculation proves that \(\tilde{u} \) will be a supersolution provided

\[
\varepsilon^2 \alpha \phi(\varepsilon \sqrt{\alpha z}) |\nabla z| - \varepsilon \varepsilon \phi'(\varepsilon \sqrt{\alpha z}) \leq \alpha \phi(\varepsilon \sqrt{\alpha z})
\]
in Ω. This is equivalent to
\[|\nabla z|^2 - \frac{\phi'(\sqrt{\alpha}z)}{\sqrt{\alpha}\phi(z)} z \leq \varepsilon^{-2} \]
in Ω. Now notice that
\[\limsup_{t \to 0} \frac{-\phi'(t)}{\phi(t)} = \limsup_{t \to 0} \frac{\sqrt{2F(\phi(t))}}{\phi(t)} = \limsup_{s \to \infty} \frac{\sqrt{2F(s)}}{\psi(s)f(s)} = \frac{1}{T}, \]
with $l > 0$ the value of the inferior limit in (Hf). Thus \tilde{u} will be a supersolution for small α if for instance $|\nabla z|^2 + 2l^{-1}z \leq \varepsilon^{-2}$, which is certainly possible by taking ε sufficiently small. By means of a comparison as in Lemma 7 we obtain that $u_\alpha \leq \tilde{u}$. Finally notice that $z(x) \geq C_d(x)$ in Ω for a positive constant C thanks to Hopf’s principle and since ϕ is decreasing we obtain the upper inequality in (2.6).

The lower inequality is shown similarly by means of a subsolution $u = \phi(K \sqrt{\alpha}z)$ for large K. If $L < \infty$ stands for the upper limit in (Hf), we remark that it is only needed that $|\nabla z|^2 + (2L)^{-1}z > 0$ in Ω, which is also a consequence of Hopf’s principle. □

Theorem 9 can also be obtained from the alternative condition (1.7) on the behavior of f for large u. Such a condition, which is essentially different from (Hf), is optimal (Remark 3). Let us begin by considering a particular case.

Theorem 10. Assume f satisfies (Hf), (Hf2) while Ω is a ball B or an annulus A of \mathbb{R}^N in problem (2.1). Then, the following statements are equivalent.

(a) f satisfies (1.7), i.e.,
\[\int_{0}^{\infty} (F - F_0)^{-1/2} < C, \]
for all $t \geq A$ and certain $A > 0$, $C > 0$.

(b) There exist positive constants C_1, C_2 and α_0 such that the solution u_α to (2.1) satisfies (2.6) for $0 < \alpha \leq \alpha_0$.

Proof. We first suppose that Ω is a ball. No generality is lost by taking $\Omega = B(0, R)$, where $B(0, R) = \{x : |x| < R\}$ (just perform a shift). Let $u_\alpha(r)$ be any radial solution to (2.1) with $u_\alpha_0 = u_0(\alpha)$ its minimum in $B(0, R)$, i.e. $u_\alpha(0) = u_0$ (the dependence on α of both u_α and u_0 will be dropped in the sequel for simplicity). Following [10] (cf. Proof of Theorem 1), $u(r)$ satisfies
\[\int_{0}^{\infty} F^{-1/2} < \sqrt{\alpha R}, \]
for $0 \leq r_1 < r_2 < R$, with $F_0 = F(u_0)$. This implies in particular,
\[\frac{1}{\sqrt{2}} \int_{u_0}^{\infty} F^{-1/2} \leq \frac{1}{\sqrt{2}} \int_{u_0}^{\infty} (F - F_0)^{-1/2} \leq \sqrt{\alpha} (R - r_1) \]
(2.7)
and so $u_\alpha \to \infty$ as $\alpha \to 0$. In addition
\[\frac{1}{\sqrt{2}} \int_{u_0}^{\infty} F^{-1/2} < \frac{1}{\sqrt{2}} \int_{u_0}^{\infty} (F - F_0)^{-1/2} \leq \sqrt{\alpha} (R - r), \]
and hence
\[\phi(\sqrt{\alpha} (R - r)) \leq u(r) \]
for $0 \leq r < R$. Thus the lower estimate in (2.6) always holds with $C_1 = 1$, irrespective of (1.7), and in the ball the proof of (2.6) reduces to proving the upper estimate.

Thus let us next show that the upper estimate in (2.6) is equivalent to (1.7). Assume first that the upper estimate in (2.6) holds, then setting $r = 0$ we get
\[C_2 \sqrt{\alpha} R \leq \psi(u_0) \]
for $\alpha \leq \alpha_0$ which is equivalent to $u_0 \geq u_0^* \alpha$ for a certain positive u_0^*. Then,
\[\frac{C_2}{\sqrt{2}} \int_{u_0}^{\infty} (F - F_0)^{-1/2} \leq \psi(u_0) \]
whence we obtain
\[
\frac{\int_{u_0}^{\infty} (F - F_0)^{-1/2}}{\int_{u_0}^{\infty} F^{-1/2}} \leq \frac{1}{C_2}
\]
for \(u_0 \geq u_0^\ast \), i.e., condition (1.7) holds.

Conversely, assume now that (1.7) is satisfied. Then in order to prove (2.6) it suffices, thanks to (2.7) with \(r_1 = r \) and \(r_2 = R \), to show that
\[
\frac{\int_{u_0}^{\infty} (F - F_0)^{-1/2}}{\int_{u_0}^{\infty} F^{-1/2}} \leq C
\]
holds also true for \(u \geq u_0 \geq u_0^\ast \). But (2.9) follows from (1.7) by observing that, as a function of \(u \), the left hand side in (2.9) is decreasing. Indeed, by differentiating in \(u \):
\[
\frac{1}{\sqrt{F(u)}} \int_{u_0}^{\infty} (F - F_0)^{-1/2} < \frac{1}{\sqrt{F(u)}} \int_{u_0}^{\infty} F^{-1/2},
\]
for all \(u > u_0 \). This completes the equivalence between (a) and (b) for \(\Omega = B(0, R) \).

To proceed with the case where \(\Omega \) is an annulus \(A \), observe that it can be assumed that \(A = \{ x : R_1 < |x| < R_2 \} \) with \(0 < R_1 < R_2 \). Let us again designate by \(u_a(r) \) a radial solution to (2.1) with \(u_0 = \min_A u_a \) (subindex \(\alpha \) being again removed for simplicity). By performing the change
\[
t = g(r) := \frac{1}{N - 2} \left(1 - \frac{1}{R_1^{N-2}} - \frac{1}{r^{N-2}} \right),
\]
for \(N \geq 3 \) or
\[
t = g(r) := \log \left(\frac{r}{R_1} \right),
\]
if \(N = 2 \), it is found that the transformed \(u \), i.e. \(v(t) = u(g^{-1}(t)) \) satisfies
\[
\alpha K_i^2 f(v) \leq v'' \leq \alpha K_i^2 f(v) \quad t \in (0, L),
\]
where \(K_i = R_i^{N-1}, i = 1, 2 \) and \(L = g(R_2) \). Since \(v \) is strictly convex, it achieves the minimum \(v_0 = u_0 \) at a unique point \(t_0 \in (0, L) \). Thus
\[
K_1 \sqrt{\alpha} (t_2 - t_1) \leq \frac{1}{\sqrt{2}} \int_{v(t_1)}^{v(t_2)} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} (t_2 - t_1),
\]
if \(t_0 \leq t_1 < t_2 < L \), while
\[
K_1 \sqrt{\alpha} (t_2 - t_1) \leq \frac{1}{\sqrt{2}} \int_{v(t_2)}^{v(t_1)} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} (t_2 - t_1),
\]
when \(0 < t_1 < t_2 \leq t_0 \) (observe the interchange of values in the limits of the integration above).

In particular we have
\[
K_1 \sqrt{\alpha} (L - t_0) \leq \frac{1}{\sqrt{2}} \int_{v(t_0)}^{\infty} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} (L - t_0),
\]
together with
\[
K_1 \sqrt{\alpha} t_0 \leq \frac{1}{\sqrt{2}} \int_{v(t_0)}^{\infty} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} t_0.
\]
Recall that \(t_0 = t_0(\alpha) \). Therefore
\[
0 < \eta_1 := \lim_{\alpha \to 0} t_0 \leq \lim_{\alpha \to 0} t_0 < L.
\]
By setting \(d(t) = \text{dist}(t, [0, L]) \) (respectively, \(d(r) = \text{dist}(r, \{R_1, R_2\}) \)) we then obtain
\[
K_1 \sqrt{\alpha} d(t_0) \leq \frac{1}{\sqrt{2}} \int_{v(t_0)}^{\infty} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} d(t_0).
\]
By observing that \(\psi(v_0) \leq K_2 \sqrt{\alpha} d(t_0) \) we conclude again that \(v_0 \to \infty \) as \(\alpha \to 0^+ \).
Assume now that \(u_\alpha \) is a family of radial solutions satisfying (2.6). Then,
\[
C_1 \sqrt{\alpha} d(t_0) \leq \psi(v_0) \leq C_1 \sqrt{\alpha} d(t_0),
\]
since \(D_1 d(r) \leq d(g(r)) \leq D_2 d(r) \) for certain positive \(D_1, D_2 \) and \(R_1 \leq r \leq R_2 \). By combining these inequalities with (2.12) we achieve
\[
\frac{1}{\sqrt{2}} \int_{v_0}^{\infty} (F - F_0)^{-1/2} \leq \frac{K_2}{C_2},
\]
for large \(v_0 \). This proves (1.7).

Conversely, let us suppose that (1.7) holds. Then, for any family of radial solutions \(u_\alpha \) we find
\[
K_1 \sqrt{\alpha} (L - t) \leq \frac{1}{\sqrt{2}} \int_{v(t)}^{\infty} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} (L - t)
\]
for \(t \geq t_0 \) while
\[
K_1 \sqrt{\alpha} t \leq \frac{1}{\sqrt{2}} \int_{v(t)}^{\infty} (F - F_0)^{-1/2} \leq K_2 \sqrt{\alpha} t
\]
holds for \(t \leq t_0 \). Thus,
\[
\psi(v(t)) \leq \begin{cases}
\sqrt{\alpha} K_2 (L - t) & t \geq t_0 \\
\sqrt{\alpha} K_2 t & t \leq t_0.
\end{cases} \tag{2.13}
\]
Assume now that \(t \geq t_0 \). If \(L - t \leq t \) then the first option above reads
\[
\psi(v(t)) \leq K_2 \sqrt{\alpha} d(t).
\]
If on the contrary, \(t \leq L - t \) then
\[
\psi(v(t)) \leq K_2 \sqrt{\alpha} \frac{(L - t)}{t} t \leq K_2 \sqrt{\alpha} \frac{(L - \eta_1)}{\eta_1} d(t)
\]
since \(d(t) = t \) in this case. By arguing in the same way with the second option of (2.13) we conclude that
\[
\psi(v(t)) \leq K_2' \sqrt{\alpha} d(t),
\]
and so
\[
\phi(K_2' \sqrt{\alpha} d(t)) \leq v(t),
\]
for all \(\alpha \) and \(t \), which is the lower estimate in (2.6).

Finally, by setting suitable values in (2.10) and (2.11) and employing (1.7) we arrive at
\[
K_1 \sqrt{\alpha} d(t) \leq \frac{1}{\sqrt{2}} \int_{v(t)}^{\infty} (F - F_0)^{-1/2} \leq \frac{C}{\sqrt{2}} \int_{v(t)}^{\infty} F^{-1/2},
\]
for all \(0 < t < L \). This yields the upper estimate in (2.6) and the proof is finished. \(\square \)

Remark 3. (i) Theorem 10 remains true if \((Hf_2)\) is dropped (but now fulfilling (KO)). In other words, uniqueness of solutions to (2.1) is not required for its validity. It suffices with changing assertion (b) by the following one.

(b') For every family of radial solutions \(u_\alpha \) to (2.1) there exist constants \(C_1, C_2 \) and \(\alpha_0 \) such that (2.6) holds for \(\alpha \leq \alpha_0 \).

(ii) To get an insight on condition (1.7) just check problem (2.1) in the one-dimensional interval \(\Omega = (-L, L) \). A direct convexity argument shows that its solution \(u_\alpha \) is symmetric with respect to \(x = 0 \). Thus, \(u_0 := \min u_\alpha = u_\alpha(0) \) and an elementary integration yields
\[
\frac{1}{\sqrt{2}} \int_{u_0(x)}^{\infty} (F - F_0)^{-1/2} = \sqrt{\alpha} (L - x) \quad 0 \leq x < L, \tag{2.14}
\]
with \(F_0 = F(u_0) \).

Consider now the mixed problem
\[
\begin{cases}
\begin{align*}
\frac{d^2 u}{dx^2} & = \alpha f(u) & 0 < x < L \\
u(0) & = u_0 & u(L) = \infty.
\end{align*}
\end{cases} \tag{2.15}
\]
It is readily checked that \(\bar{u}(x) = \phi(\sqrt{\alpha} (L - x)) \) is a subsolution \(\phi(\sqrt{\alpha} L) < u_0 \) while \(\underline{u}(x) = \phi(A \sqrt{\alpha} (L - x)) \) is a comparable supersolution if \(A \leq 1 \) and
\[
\phi(A \sqrt{\alpha} L) \geq u_0.
\]
After this choice, estimate (2.6) reads
\[u(x) \leq u_\alpha \leq \mathbb{1}(x), \]
provided that \(A = A(\alpha) \leq 1 \) can be found which keeps uniformly bounded away from zero as \(\alpha \to 0^+ \), equivalently as \(u_0 \to \infty \). The “optimum” choice for \(A(\alpha) \) is just:
\[\phi(A\sqrt{\alpha}L) = u_0, \]
i.e.,
\[A(\alpha) = \frac{\psi(u_0)}{\sqrt{\alpha}L} = \frac{\int_{u_0}^{\infty} F^{-1/2}}{\int_{u_0}^{\infty} (F - F_0)^{-1/2}}. \]
where relation (2.14) with \(x = 0 \) has been employed to provide an alternative expression for \(\sqrt{\alpha}L \). Condition (1.7) simply reads
\[A_- := \lim_{\alpha \to 0} A(\alpha) > 0. \]
Indeed, \(C_2^* = A_- \) is just the best choice for constant \(C_2 \) in (2.6).

(iii) A positive measurable function \(f \) defined on \([0, \infty)\) is said to be regularly varying with index \(p \) at infinity if
\[\lim_{t \to \infty} \frac{f(\alpha t)}{f(t)} = \alpha^p, \]
for all \(t > 0 \) [19]. Let us show that such an \(f \) satisfies (1.7) provided \(p > 1 \) ((KO) condition is an immediate consequence of \(p > 1 \)). In fact, for fixed \(\theta > 1 \),
\[\frac{\int_1^{\infty} (F - F_1)^{-1/2}}{\int_1^{\infty} F^{-1/2}} \leq \max \left\{ \frac{\int_1^{\theta \alpha} (F - F_1)^{-1/2}}{\int_1^{\theta \alpha} F^{-1/2}}, \frac{\int_1^{\infty} (F - F_1)^{-1/2}}{\int_1^{\infty} F^{-1/2}} \right\}. \]
But, \(F(\theta u) > \theta F(u) \) for \(u > 0 \). Thus
\[\frac{\int_1^{\theta \alpha} (F - F_1)^{-1/2}}{\int_1^{\theta \alpha} F^{-1/2}} \leq \left(1 - \frac{F(t)}{F(\theta t)} \right)^{-1/2} \leq \left(\frac{\theta}{\theta - 1} \right)^{1/2}. \]
(2.16)
On the other hand, it follows from Theorem 1.1 in [19] that \(F(t s)/F(t) \to s^{p+1} \) uniformly in \([1, \theta]\) as \(t \to \infty \). Hence
\[\frac{\int_1^\theta (F - F_1)^{-1/2}}{\int_1^\theta F^{-1/2}} = \int_1^\theta \left(\frac{F(t)}{\int_1^\theta \frac{F(t)}{F(\theta t)}} - 1 \right)^{-1/2} \frac{ds}{\int_1^\theta \left(\frac{F(t)}{\int_1^\theta \frac{F(t)}{F(\theta t)}} \right)^{-1/2}} \to \int_1^\theta s^{-(p+1)/2} ds \]
as \(t \to \infty \). In conclusion, \(f \) satisfies (1.7).

(iv) Let us show now that \(f \) also fulfills \((H_3)\) provided it is of regular variation at infinity with index \(p > 1 \). Actually, this implies that \(F^{-1/2} \) is of regular variation with index \(-(p + 1)/2 \). Thus (see [19])
\[\frac{t^{1/2}}{\int_1^\infty F^{-1/2}} \sim \frac{p - 1}{2} \]
\[\frac{tf(t)}{\int_0^\theta f} \sim p + 1 \]
\[as \ t \to \infty \] in both cases. Hence
\[\frac{f}{\sqrt{F}} \int_1^\infty F^{-1/2} \sim 2^{p + 1} \]
\[as \ t \to \infty \] and we are done.

Let us next show that the same conclusions of Theorem 9 can be attained when replacing condition \((H_3)\) by (1.7).

Theorem 11. Suppose \(f \) satisfies \((H_1)\), \((H_2)\) and (1.7). Then, positive constants \(C_1, C_2 \) and \(\alpha_0 \) exist so that the solution \(u_\alpha \) to (2.1) satisfies
\[\phi(C_1 \sqrt{\alpha}d(x)) \leq u_\alpha(x) \leq \phi(C_2 \sqrt{\alpha}d(x)) \quad x \in \Omega, \]
for all \(0 < \alpha \leq \alpha_0 \).

Proof. Due to the smoothness of \(\partial \Omega \) there exists a fixed number \(\rho > 0 \) such that for each \(y \in \partial \Omega \) points \(z_i \in \Omega, z_e \in \mathbb{R}^N \backslash \overline{\Omega} \) can be found with \(B(z_i, \rho) \subset \Omega, B(z_e, \rho) \subset \mathbb{R}^N \backslash \overline{\Omega} \) and \(\partial B(z_i, \rho) \cap \partial \Omega = \partial B(z_e, \rho) \cap \partial \Omega = \{ y \} \).
Let \(x \in \Omega \) be so that \(d(x) \leq \delta \), while \(y = y(x) \in \partial \Omega \) satisfies \(|x - y| = d(x) \). Then,
\[
u_{\alpha}(x) \leq u_{\alpha, \delta}(x - z_i)
\]
where \(z_i \) is the center of the inner sphere \(B(z_i, \rho) \), tangent to \(\partial \Omega \) at \(y \), while \(u_{\alpha, \delta} \) is the solution to (2.1) in \(\Omega = B(0, \rho) \). Thus, (1.7) implies the existence of \(C_2 \) and \(\alpha_0 \) such that
\[
u_{\alpha}(r) \leq \phi(C_2 \sqrt{\alpha} (\rho - r)) \quad 0 \leq r \leq \rho,
\]
for \(\alpha \leq \alpha_0 \). Hence, it follows that
\[
u_{\alpha}(x) \leq \phi(C_2 \sqrt{\alpha} (\rho - |x - z_i|)) = \phi(C_2 \sqrt{\alpha} d(x)),
\]
provided \(d(x) \leq \delta \). To complete the upper estimate in (2.6) set
\[
d_\Omega = \max_{x \in \Omega} d(x)
\]
and define
\[
h = \frac{C_2(d_\Omega - \delta)}{d_\Omega}.
\]
Since \(\nu_{\alpha} \) is subharmonic we achieve
\[
u_{\alpha}(x) \leq \phi(C_2 \sqrt{\alpha} \delta) = \phi((C_2 - h) \sqrt{\alpha} d_\Omega) \leq \phi((C_2 - h) \sqrt{\alpha} d(x)),
\]
for all \(x \in \Omega \) such that \(d(x) \geq \delta \). Therefore
\[
u_{\alpha}(x) \leq \phi((C_2 - h) \sqrt{\alpha} d(x)),
\]
holds true for all \(x \in \Omega \) and \(\alpha \leq \alpha_0 \). The upper estimate in (2.6) is thus accomplished.

To obtain the lower estimate observe that a fixed \(R > 0 \) can be found so that \(\Omega \subseteq z_r(y) + A \) for all \(y \in \partial \Omega \) where \(A \) stands for the “stationary” annulus \(A = \{x : \rho < |x| < R\} \). If \(x \in \Omega \) and \(y \in \partial \Omega \) satisfies \(|x - y| = d(x) \) then
\[
u_{\alpha}(x) \geq u_{\alpha, \lambda}(x - z_r(y)),
\]
where \(u_{\alpha, \lambda} \) defines the solution to (2.1) in \(A \). Then condition (1.7) implies that
\[
u_{\alpha}(x) \geq \phi(C_1 \sqrt{\alpha} (|x - z_r(y)| - \rho)) = \phi(C_1 \sqrt{\alpha} d(x)).
\]
Since \(x \) is arbitrary and \(A \) does not depend on \(x \) the proof is finished. \(\square \)

Remark 4. If \(f \) satisfies (KO) then (Hf2) can be once again dropped in the statement of Theorem 11 by replacing the reference to a “unique” solution \(u_\alpha \) by an arbitrary family \(\{u_{\alpha}\} \) of solutions to (2.1) with \(\alpha \rightarrow 0 \). In that case, the upper estimate is shown for the maximal solution \(U_\alpha \), and to this purpose, one works in turn with the maximal solution to the auxiliary problem in the ball \(B \) which is certainly radial. A dual approach works for the lower estimate.

3. Necessary conditions

We now come to the proof of the necessity of conditions (KO) and (1.5) for the existence of positive solutions.

Proof of Theorem 1. Assume a positive solution to (1.1) exists, and let
\[
\alpha = \frac{\lambda}{1 + \frac{1}{|\Omega|} \int_{\Omega} g(u)}.
\]
Then \(u \) is a solution to the problem (2.1) and consequently \(\alpha > 0 \) and \(f \) verifies condition (KO) (see for instance [16]). This shows (a) and (b).

To prove (c), recall that \(g(u) \in L^1(\Omega) \). Now choose \(\epsilon > 0 \) small. Since \(u \) is a solution to (2.1), it follows from Theorem 6 that there exists \(\delta > 0 \) with
\[
(1 - \epsilon) \sqrt{\alpha} d(x) \leq \psi(u(x)) \leq (1 + \epsilon) \sqrt{\alpha} d(x),
\]
provided \(d(x) < \delta \). Since \(\phi \) is decreasing, this implies \(\phi((1 + \epsilon) \sqrt{\alpha} d(x)) \leq u(x) \leq \phi((1 - \epsilon) \sqrt{\alpha} d(x)) \) if \(d(x) < \delta \). Choosing a smaller \(\delta \) if necessary we may assume \(\phi((1 + \epsilon) \sqrt{\alpha} d(x)) \geq t_0 \) for \(d(x) < \delta \), where \(t_0 \) is given in condition (Hg). We only need to consider the case where \(g(t) \) is increasing for \(t \geq t_0 \) (otherwise \(g \) remains bounded). Since \(g(u) \in L^1(\Omega) \), we have
\[
\int_{\Omega} g(\phi((1 + \epsilon) \sqrt{\alpha} d(x))) < \infty,
\]
where \(\Omega_{\delta} = \{ x \in \Omega : d(x) < \delta \} \). We perform a change of variables in the integral, letting \(x = \tilde{x} - tv(y) \), where \(\tilde{x} \in \partial \Omega, 0 < t < \delta \) and \(v(y) \) is the outward unit normal at \(y \). This change is smooth, since we are assuming that \(\partial \Omega \) is smooth. If we denote the Jacobian of the change by \(J(t, y) \), then we have

\[
\int_{0}^{\delta} \int_{\partial \Omega} g(\phi((1 + \varepsilon)\sqrt{d t})) J(t, y) d\sigma(y) dt < \infty. \tag{3.1}
\]

Thanks to the smoothness and compactness of \(\partial \Omega \), we can find positive constants \(\kappa_1, \kappa_2 \) such that \(\kappa_1 \leq J(t, y) \leq \kappa_2 \) and then (3.1) implies

\[
\int_{0}^{\delta} g(\phi((1 + \varepsilon)\sqrt{d t})) dt < \infty.
\]

By performing the change \(\phi((1 + \varepsilon)\sqrt{d t}) = s \), we obtain (recalling the definition of \(\phi \) as the inverse of \(\psi \)):

\[
\int_{\phi((1 + \varepsilon)\sqrt{d t})}^{\infty} \frac{g(s)}{\sqrt{F(s)}} ds < \infty,
\]

and thus the necessity of condition (1.5) for existence is shown. This concludes the proof of part (c) of the theorem. \(\square \)

4. Existence of solutions

This section is devoted to prove existence and multiplicity of positive solutions to (1.1). As seen in the previous section, if \(u \in C^2(\Omega) \) is positive and verifies \(u = \infty \) on \(\partial \Omega \), denoting

\[
\alpha = \frac{\lambda}{1 + \frac{1}{|\Omega|} \int_{\Omega} g(u)},
\]

then \(u \) will be a solution to (1.1) if and only if \(u = u_\alpha \). That is, solving problem (1.1) amounts to solving the equation

\[
H(\alpha) = \lambda
\]

for \(\lambda, \alpha > 0 \), where

\[
H(\alpha) = \alpha \left(1 + \frac{1}{|\Omega|} \int_{\Omega} g(u_\alpha) \right). \tag{4.1}
\]

Thus our main effort will be put in analyzing the precise behavior of \(H(\alpha) \) for \(\alpha > 0 \). We first show that \(H \) is continuous.

Lemma 12. Assume \(f \) verifies (Hf1), (Hf2) and \(g \) verifies (Hg) and (1.5). If \(u_\alpha \) denotes the unique positive solution to (2.1) for \(\alpha > 0 \), then the function \(H(\alpha) \) given by (4.1) is well-defined and continuous for \(\alpha > 0 \).

Proof. The proof that \(g(u_\alpha) \in L^1(\Omega) \) is similar to part (c) in Theorem 1: first notice that if \(g(t) \) is decreasing for \(t \geq t_0 \), then it is bounded in \(\min_{\partial \Omega} u_\alpha, \infty \), and there is nothing to prove. Thus we may assume \(g(t) \) is increasing for \(t \geq t_0 \). Let \(\varepsilon > 0 \) and choose \(\delta > 0 \) so that \(\psi((1 + \varepsilon)\sqrt{d(x)}) \leq u(x) \leq \psi((1 - \varepsilon)\sqrt{d(x)}) \) if \(d(x) < \delta \). We may also assume \(u_\alpha \geq t_0 \) in \(d(x) < \delta \).

Observe that we only need to show \(g(u_\alpha) \in L^1(\Omega_{\delta}) \) with \(\Omega_{\delta} = \{ d(x) < \delta \} \). Since \(g(u_\alpha) \) is positive in \(\Omega_{\delta} \) and

\[
\int_{\Omega_{\delta}} g(u_\alpha) \leq \int_{\Omega_{\delta}} g(\phi((1 - \varepsilon)\sqrt{d(x)})) = \int_{0}^{\delta} \int_{\partial \Omega} g(\phi((1 - \varepsilon)\sqrt{d t})) J(t, y) d\sigma(y) dt
\]

\[
\leq \kappa_2 |\partial \Omega| \int_{0}^{\delta} g(\phi((1 - \varepsilon)\sqrt{d t})) dt \leq \frac{\kappa_2 |\partial \Omega|}{\sqrt{\phi(1 - \varepsilon)}} \int_{\phi((1 - \varepsilon)\sqrt{d t})}^{\infty} \frac{g(s)}{\sqrt{F(s)}} ds,
\]

this is clear thanks to condition (1.5).

To conclude the proof we only need to show that \(\alpha \to \int_{\Omega} g(u_\alpha) \) is continuous in \(\alpha > 0 \). Let \(\alpha_n \to \alpha \) be an arbitrary sequence. For small \(\varepsilon \) and large \(n \) we have \(u_{\alpha_n + \varepsilon} \leq u_{\alpha_n} \leq u_{\alpha_n - \varepsilon} \) in \(\Omega \).

The case where \(g(t) \) is decreasing for \(t \geq t_0 \) is straightforward, since this implies that \(g \) is bounded in \(\min_{\partial \Omega} u_{\alpha_n + \varepsilon}, \infty \) and thus dominated convergence implies

\[
\int_{\Omega} g(u_{\alpha_n}) \to \int_{\Omega} g(u_{\alpha}).
\]

In the other case, since we can select a small \(\delta > 0 \) such that \(u_{\alpha_n} \geq t_0 \) in \(\Omega_{\delta} \) for large \(n \), we obtain \(g(u_{\alpha_n}) \leq g(u_{\alpha - \varepsilon}) \in L^1(\Omega_{\delta}) \) in \(\Omega_{\delta} \), and dominated convergence gives

\[
\int_{\Omega_{\delta}} g(u_{\alpha_n}) \to \int_{\Omega_{\delta}} g(u_{\alpha}).
\]
Finally, since \(u_{\alpha n} \leq \sup_{\Omega \setminus \Omega_3} u_{\alpha - t} \) in \(\Omega \setminus \Omega_3 \), we also have

\[
\int_{\Omega \setminus \Omega_3} g(u_{\alpha n}) \to \int_{\Omega \setminus \Omega_3} g(u_{\alpha}).
\]

This concludes the proof. \(\square \)

The next step is analyzing the values of \(H \) at both zero and infinity. This turns out to be the crucial ingredient in our proof of existence (and multiplicity).

Theorem 13. Assume \(f \) verifies \((H_{f1})\), \((H_{f2})\) and \(g \) verifies \((H_g)\) and \((1.5)\). Then

\[
\lim_{\alpha \to \infty} \frac{H(\alpha)}{\alpha} = 1 + g(0).
\]

If \(f \) verifies either \((H_{f2})\) or \((1.7)\) then we also have

\[
\lim_{\alpha \to 0^+} H(\alpha) = 0
\]

and \(H(\alpha) > 0 \) for small \(\alpha > 0 \).

Proof. Let us prove first \((4.2)\). Thanks to Theorem 8 we have \(u_\alpha \to 0 \) point-wise in \(\Omega \) as \(\alpha \to \infty \), so the case where \(g \) is decreasing for large values of \(t \) (and hence bounded) is immediate thanks to dominated convergence.

Thus we may assume \(g(t) \) is positive and increasing for \(t \geq t_0 \). Introduce the sets

\[
\Omega_\alpha^- = \{ x \in \Omega : u_\alpha(x) < t_0 \} \quad \Omega_\alpha^+ = \{ x \in \Omega : u_\alpha(x) \geq t_0 \},
\]

and choose \(\alpha > 0 \) large enough. For \(\alpha \geq \alpha_1 \) we get the estimate:

\[
|g \circ u_\alpha| \leq \max_{0 \leq t \leq t_0} |g(t)| + \chi_{\Omega_\alpha^+} g \circ u_\alpha \leq \max_{0 \leq t \leq t_0} |g(t)| + \chi_{\Omega_\alpha^+} g \circ u_{\alpha_1},
\]

where \(g \circ u_\alpha(x) = g(u_\alpha(x)) \) and the monotonicity of \(u_\alpha \) with respect to \(\alpha \) has been employed to achieve the estimate. Since \(g \circ u_\alpha \to 0 \) point-wise in \(\Omega \) as \(\alpha \to \infty \), dominated convergence again yields the desired result.

Finally we prove that either under the additional conditions \((H_{f3})\) or \((1.7)\) we have \(H(0) = 0 \). Notice that neither of them are necessary when \(g \) is bounded for then \(\alpha \int_\Omega g(u_\alpha) \) is positive for small \(\alpha \) and tends to zero as \(\alpha \to 0 \).

Thus we may assume \(g \) is increasing for \(t \geq t_0 \). Thanks to either Theorem 9 or Theorem 11 we have that \(u_\alpha \to \infty \) uniformly in \(\Omega \) as \(\alpha \to 0 \) and \(u_\alpha \leq \phi(C_2 \sqrt{\alpha}d(x)) \) for some positive \(C_2 \) if \(\alpha \) is sufficiently small. Thus we have \(u_\alpha \geq t_0 \) for small \(\alpha \). This implies that

\[
\int_\Omega g \circ u_\alpha \to \infty,
\]

as \(\lambda \to 0 \). Consequently \(H(\alpha) > \alpha \) for small \(\alpha \), and so \(\lim_{\alpha \to 0^+} H(\alpha) \geq 0 \).

On the other hand, by arguing as in the proof of Lemma 12 we get for small \(\alpha \) and \(\delta \):

\[
\int_{\Omega_\delta} g(u_\alpha) \leq \frac{\kappa_2 |\partial \Omega|}{\sqrt{\alpha}} \int_0^\infty \frac{g(s)}{\sqrt{2F(s)}} ds = o(\alpha^{-1/2}),
\]

as \(\alpha \to 0 \). Moreover:

\[
\int_{\Omega \setminus \Omega_\delta} g(u_\alpha) \leq |\Omega| \frac{g(\phi(C_2 \sqrt{\alpha} \delta))}{\sqrt{2F(\phi)}}.
\]

Now notice that condition \((1.5)\) imposes a growth restriction on \(g \). Namely,

\[
g(t) \psi(t) \leq \int_t^\infty \frac{g(s)}{\sqrt{F(s)}} ds
\]

when \(t \geq t_0 \), and thus

\[
g(t) = o\left(\frac{1}{\psi(t)}\right)
\]

as \(t \to \infty \). Hence, for small \(\alpha \):

\[
g(\phi(C_2 \sqrt{\alpha} \delta)) = \frac{o(1)}{\psi(\phi(C_2 \sqrt{\alpha} \delta))} = \frac{o(1)}{C_2 \sqrt{\alpha \delta}} = o(\alpha^{-1/2}),
\]

as \(\alpha \to 0 \). Summing up, from \((4.4)\)–\((4.6)\) we obtain that the integral of \(g(u_\alpha) \) in \(\Omega \) is \(o(\alpha^{-1/2}) \) as \(\alpha \to 0 \). Hence \(H(\alpha) = o(\alpha^{1/2}) \) as \(\alpha \to 0 \). This concludes the proof. \(\square \)
Now we are ready to perform the proof of our main existence theorems.

Proof of Theorem 2. It has been already pointed out that solutions to (1.1) correspond to solutions of the equation \(H(\alpha) = \lambda \). Now \(H(\alpha) \) is continuous and verifies \(H(0) = 0 \). According to (4.2) in Theorem 13 we have \(H(\alpha) \to +\infty \) when \(\alpha \to \infty \) in case (a), while \(H(\alpha) \to -\infty \) in case (b). Thus in case (a) the equation \(H(\alpha) = \lambda \) is solvable for every \(\lambda > 0 \).

In case (b), denote \(\lambda^* = \sup_{\mathbb{R}^+} H \) and take a value \(\alpha^* > 0 \) such that \(H(\alpha^*) = \lambda^* \). Notice that \(H(\alpha) > 0 \) for small positive \(\alpha \), so that \(\lambda^* > 0 \). It is clear that for \(\lambda > \lambda^* \) the equation \(H(\alpha) = \lambda \) has no solution, while for \(\lambda \in (0, \lambda^*) \), there are at least two values \(\alpha_1 \in (0, \alpha^*), \alpha_2 \in (\alpha^*, \infty) \) such that \(H(\alpha_i) = \lambda \) for \(i = 1, 2 \). This concludes the proof. \(\square \)

Remark 5. Since \(H(\alpha) \to \infty \) as \(\alpha \to \infty \) provided \(g(0) > -1 \), the existence of positive solutions to (1.1) for large values of \(\lambda \) is guaranteed irrespective of conditions \((Hf_2)\) or (1.7).

Proof of Theorem 3. By reasoning as in the proof of Theorem 2 it suffices with showing that

\[
\lim_{\alpha \to 0} H(\alpha) = 0,
\]

with \(H(\alpha) = \alpha (1 + \frac{1}{2N} \int_{\partial \omega} g \circ u_{\alpha}) \) where, of course, we confine ourselves to the case \(g \) not bounded. By employing the same terminology as in the proof of Theorem 11 we have

\[
u_{\alpha}(x) \leq u_{\alpha, \beta}(x - z_{\alpha}(y)) \quad x \in B(z_{\alpha}(y), \rho)
\]

where \(y \in \partial \omega \) satisfies \(|x - y| = d(x), B(z_{\alpha}(y), \rho) \) is the inner ball to \(\omega \) which is tangent to \(\partial \omega \) at \(y \) and \(\rho \) is the uniform radius of inner tangent balls to \(\partial \omega \). In addition \(u_{\alpha, \beta} \) stands for the solution to (2.1) in \(\omega = B(0, \rho) \).

Put \(u_0 = \min_{B(0, \rho)} u_{\alpha, \beta} \) and set \(u_{\alpha, \alpha}(x) = v(r), r = |x| \) (\(\alpha \) being dropped from both \(v \) and \(u_0 \) for simplicity). Notice that \(v(0) = u_0 \). Choose \(\theta > 1 \), then a unique \(0 < r_0 < \rho \) exists such that \(v(r_0) = \theta u_0 \). Thus we obtain that,

\[
u_{\alpha}(x) \leq v(\rho - d(x)),
\]

for \(d(x) < \rho - r_0 \) while

\[
u_{\alpha}(x) \leq v(\theta u_0),
\]

if \(d(x) \geq \rho - r_0 \) due to the subharmonicity of \(u_{\alpha} \).

Now,

\[
\int_{|d(x)| < \rho - r_0} g \circ u_{\alpha} \leq \kappa_2 |\partial \omega| \int_0^{\rho - r_0} g(v(\rho - t)) \; dt.
\]

By a suitable use of (2.7) and the ideas leading to (2.16) we get

\[
\sqrt{\frac{\alpha}{N}}(\rho - r) \leq \frac{1}{\sqrt{2}} \int_{v(r)}^\infty (F - F_0)^{-1/2} \leq \left(1 - \frac{1}{\theta} \right)^{-1/2} \psi(v(r)),
\]

for \(r_0 \leq r < \rho \), where \(F_0 = F(u_0) \). That is why

\[
v(\rho - t) \leq \phi(C_\theta \sqrt{\alpha} t)
\]

for all \(0 < t \leq \rho - r_0 \) and a certain constant \(C_\theta \). Thus,

\[
\int_{|d(x)| < \rho - r_0} g \circ u_{\alpha} \leq \frac{C}{\sqrt{\alpha}} \int_{\phi(C_\theta \sqrt{\alpha}(\rho - r_0))}^{\infty} \frac{g}{\sqrt{F}},
\]

for a certain positive constant \(C \). This implies

\[
\int_{|d(x)| < \rho - r_0} g \circ u_{\alpha} = o \left(\frac{1}{\sqrt{\alpha}} \right) \quad \alpha \to 0.
\]

(4.7)

We now claim that, in view of \((Hf_2)\)

\[
u_0 = O \left(\alpha^{-\frac{1}{p-1}} \right) \quad \alpha \to 0.
\]

Therefore, such estimates together with (1.8) leads to

\[
\alpha \int_{|d(x)| > \rho - r_0} g \circ u_{\alpha} \leq |\Omega| \alpha g(\theta u_0) = o(1) \quad \alpha \to 0.
\]

By combining this with (4.7) we conclude that \(H(\alpha) \to 0 \).
To show the claim simply observe that from (2.7) we get
\[\sqrt{\frac{\alpha}{N}} \rho \leq \frac{1}{\sqrt{2}} \int_{u_0}^{\infty} (F - F_0)^{-1/2}, \]
On the other hand, \((Hf_2)\) entails the existence of a positive \(c\) such that \(f(t) \geq ct^p\) for large \(t\). Hence,
\[\int_{u_0}^{\infty} (F - F_0)^{-1/2} \leq Ku_0^{\frac{p-1}{2}}, \]
\(K\) being a positive constant whose explicit value is irrelevant here. Thus,
\[u_0 \leq K\alpha^{-\frac{1}{p-1}} \tag{4.8} \]
for a new constant \(K\) and large \(u_0\) (small \(\alpha\)). \(\Box\)

5. Proof of Theorem 4

In this section we analyze the particular instance of a power nonlinearity in (1.1). That is, we are taking \(f(t) = t^p\), \(p > 1\). The expression of the solution \(u_\alpha\) to (2.1) in this case is explicit in terms of \(\alpha\). Indeed,
\[u_\alpha = \alpha^{-\frac{1}{p-1}} U, \]
where \(U = u_1\). Since in the present case \(\phi(s) = As^{-\gamma}\), where \(\gamma = 2/(p - 1)\) and \(A = (\gamma(\gamma + 1))^{-\frac{1}{p-1}}\), according to the boundary behavior (2.3) we find that there exist positive constants \(C_1, C_2\) such that \(C_1d(x)^{-\gamma} \leq U(x) \leq C_2d(x)^{-\gamma}\) in \(\Omega\).

The function \(H\) takes the form
\[H(\alpha) = \alpha \left(1 + \frac{1}{|\Omega|} \int_{\Omega} g \left(\alpha^{-\frac{1}{p-1}} U \right) \right). \]
The important point in the proof of Theorem 4 is that condition (1.10) ensures that \(H\) is differentiable for \(\alpha > 0\), and the limit of \(H(\alpha)\) as \(\alpha \to \infty\) can be determined.

Proof of Theorem 4. Notice that condition (1.10) implies that \(|g(s)| \leq As^{\theta+1} + B\) for \(s \geq 0\), and thus (1.5) holds (notice that \(\theta + 1 < \frac{p+1}{p-1} - 1\)). Theorem 2(a) gives then that problem (1.9) has a solution for every \(\lambda > 0\).

The differentiability of the integral term in \(H\) follows because its expected derivative is well-defined. Indeed, it follows by (1.10) that the function of two variables
\[W(\alpha, x) = g \left(\alpha^{-\frac{1}{p-1}} U(x) \right) \]
verifies \(|W(\alpha, x)| \leq Cd(x)^{-\gamma(\theta+1)} + B\) for some positive constant \(C\) independent of \(\alpha \geq \alpha_0 > 0\). Moreover, the derivative of \(W\) with respect to \(\alpha\) is continuous and it verifies
\[\left| \frac{\partial W}{\partial \alpha}(\alpha, x) \right| = \alpha^{-\frac{p}{p-1}} g' \left(\alpha^{-\frac{1}{p-1}} U \right) \leq Cd(x)^{-\gamma(\theta+1)}, \]
where \(C\) does not depend on \(\alpha\) if \(\alpha \geq \alpha_0 > 0\). Thus we conclude that the integral term \(\int_{\Omega} W(\alpha, x) dx\) is differentiable in \(\alpha\) for \(\alpha > 0\). Hence the derivative of \(H\) becomes
\[H'(\alpha) = 1 + \frac{1}{|\Omega|} \int_{\Omega} g \left(\alpha^{-\frac{1}{p-1}} U \right) \left(\frac{\alpha^{-\frac{1}{p-1}}}{p-1} + \frac{\alpha^{-\frac{1}{p-1}}}{p-1} \int_{\Omega} g' \left(\alpha^{-\frac{1}{p-1}} U \right) U \right). \]
It follows by the proof of Theorem 13 that the first two terms converge to \(1 + g(0)\). We claim that the last term goes to zero as \(\alpha \to \infty\). Indeed, notice that \(|g'(t)| \leq Ct^{\theta+1}\) if \(\theta > 1\), since \(|g(t)| \leq M\) for \(0 \leq t \leq 1\). Then by dominated convergence, since \(tg'(t) \to 0\) as \(t \to 0\) we obtain
\[\alpha^{-\frac{1}{p-1}} \int_{\Omega} g' \left(\alpha^{-\frac{1}{p-1}} U \right) U \to 0. \]
We have shown thus that
\[\lim_{\alpha \to \infty} H'(\alpha) = 1 + g(0) > 0, \]
so that \(H'(\alpha) > 0\) for large \(\alpha\), and hence the equation \(H(\alpha) = \lambda\) is uniquely solvable for all large values of \(\lambda\). Thus (1.9) has a unique positive solution for every large \(\lambda\).

Finally, notice that condition (1.11) implies that \(g(t) - \frac{1}{p-2} g'(t) t \geq 0\) for \(t > 0\) and thus \(H' > 0\) in the complete range \((0, \infty]\). This gives the uniqueness of the solution to \(H(\alpha) = \lambda\) for every \(\lambda > 0\). The proof is concluded. \(\Box\)
6. Some further nonlocal boundary blow-up problems

In this final section we give some ideas on how the same methods we have employed along the paper apply to some more general boundary blow-up problems with a nonlocal reaction.

6.1. A logistic problem

We are dealing now with a slightly more general version of (1.2), i.e. the problem
\[
\begin{cases}
\Delta u = \lambda u \left(1 + \frac{1}{|\Omega|} \int_{\Omega} g(u) \right) & x \in \Omega \\
u = \infty & x \in \partial \Omega,
\end{cases}
\]
(6.1)
with \(\Omega \subset \mathbb{R}^N \) a bounded smooth domain and where for biological significance, \(g(u) \) is chosen as a positive and increasing continuous function in \(u \geq 0 \) with \(g(0) = 0 \), \(g(\infty) = \infty \). As for the function \(h \), we assume that it is increasing and continuous in \(u \geq 0 \) with \(h(0) = 0 \), locally Lipschitz in \(u > 0 \) while certain \(\theta > 0 \) exists such that
\[
\frac{h(u)}{u^\theta}.
\]
(6.2)
is increasing for large \(u \). Of course, our reference model is the logistic problem (1.2) where \(h(u) = u^{\theta-1} \) with \(\theta > 1 \). Notice also that thanks to (6.2), the nonlinearity in (6.1) satisfies the imperative (KO) condition.

The main properties of (6.1) are next stated.

Theorem 14. Under the preceding conditions on functions \(g \) and \(h \), problem (6.1) admits for every \(\lambda > 0 \) a unique classical solution \(u_\lambda \in C^2(\Omega) \). Moreover, \(u_\lambda \) continuously varies with \(\lambda \) while
\[
\lim_{\lambda \to 0} u_\lambda = \infty,
\]
uniformly in \(\Omega \). In addition,
\[
\lim_{\lambda \to \infty} u_\lambda = h^{-1}\left(\frac{1}{\alpha_\infty}\right),
\]
uniformly on compacts of \(\Omega \), \(\alpha = \alpha_\infty \) being the unique solution to
\[
\alpha = 1 + g\left(h^{-1}\left(\frac{1}{\alpha}\right)\right).
\]
(6.5)

The proof of Theorem 14 relies upon the following result.

Theorem 15. Assume \(h \) is chosen as in Theorem 14. Then, the problem
\[
\begin{cases}
\Delta u = \lambda u(\alpha h(u) - 1) & x \in \Omega \\
u = \infty & x \in \partial \Omega,
\end{cases}
\]
(6.6)
with \(\lambda, \alpha \) positive parameters, possesses the following properties.
(a) For each pair \(\lambda > 0, \alpha > 0 \) it admits a unique solution \(u = u_{\lambda, \alpha} \in C^2(\Omega) \) such that
\[
u_{\lambda, \alpha}(x) > h^{-1}\left(\frac{1}{\alpha}\right) & x \in \Omega.
\]
(6.7)
(b) \(u_{\lambda, \alpha} \) is separately decreasing on \(\lambda \) and \(\alpha \), and it is continuous in \((\lambda, \alpha)\).
(c) For fixed \(\alpha > 0, u_{\lambda, \alpha} \to \infty \) uniformly in \(\Omega \) as \(\lambda \to 0 \) while \(u_{\lambda, \alpha} \to h^{-1}(1/\alpha) \) uniformly on compacts of \(\Omega \) as \(\lambda \to \infty \).
(d) For fixed \(\alpha > 0, u_{\lambda, \alpha} \to \infty \) uniformly in \(\Omega \) as \(\alpha \to 0 \) while \(u_{\lambda, \alpha} \to 0 \) uniformly on compacts of \(\Omega \) as \(\alpha \to \infty \).

Outline of the proof. The existence and uniqueness assertions follow directly from Theorem 6 meanwhile (6.7) is implied by the maximum principle. The continuity and monotonicity of \(u_{\lambda, \alpha} \) are a consequence of uniqueness and their proofs follow the lines of the one of Lemma 7.

As for the asymptotic profile of \(u_{\lambda, \alpha} \) as either \(\lambda \to 0 \) or \(\alpha \to 0 \) observe that \(u_{\lambda, \alpha} \) satisfies the lower estimate
\[
u_{\lambda, \alpha} > U_\gamma,
\]
with \(\gamma = \lambda \alpha \), where \(u = U_\gamma \) solves the problem
\[
\begin{cases}
\Delta u = \gamma uh(u) & x \in \Omega \\
u = \infty.
\end{cases}
\]
By exploiting estimate (2.8), which is solely based on the (KO) condition, it is possible to show that \(U_\gamma \to \infty \) uniformly in \(\Omega \) as \(\gamma \to 0 \). Thus, the same happens to \(u_{\lambda, \alpha} \) when either \(\lambda \to 0 \) or \(\alpha \to 0 \).
Finally, let us show the limit behavior of $u_{\lambda, \alpha}$ when, say $\alpha \to \infty$. By estimating as in the proofs of Theorems 3 and 11 it suffices to show the behavior in the case where Ω is the ball $B(0, \mathbb{R})$. By writing in this scenario $u_\alpha(r)$ instead of $u_{\lambda, \alpha}$, we find for small $\varepsilon > 0$ (and assuming $N \geq 3$ for simplicity)

$$\frac{u_\alpha(R - \varepsilon)}{\lambda \alpha} \geq \frac{1}{N - 2} \int_0^{R - \varepsilon} t \left(1 - \left(\frac{t}{R - \varepsilon} \right)^{N-2} \right) u_\alpha(h(u_\alpha) - 1/\alpha).$$

Since $u = \lim_{\alpha \to \infty} u_\alpha$ exists then Fatou's lemma implies

$$\int_0^{R - \varepsilon} t \left(1 - \left(\frac{t}{R - \varepsilon} \right)^{N-2} \right) uh(u) = 0.$$

Thus $u = 0$. Due to the fact that $u_\alpha(r)$ is increasing in r, convergence is uniform in $r \leq R - \varepsilon$. In case of a general smooth bounded domain Ω, the uniform convergence on compacts follows from the subharmonicity of $u_{\lambda, \alpha}$. □

Proof of Theorem 14. As in Section 4 set

$$H(\lambda, \alpha) = 1 + \frac{1}{|\Omega|} \int_{\Omega} g(u_{\lambda, \alpha}),$$

where $u_{\lambda, \alpha}$ is the solution to (6.6). Then, u solves (6.1) for given $\lambda > 0$ provided $u = u_{\lambda, \alpha}$ where α is a solution to

$$\alpha = H(\lambda, \alpha).$$

(6.8)

For fixed λ, $H(\lambda, \cdot)$ is continuous and decreasing with $H(\lambda, \alpha) \to \infty$ as $\alpha \to 0$ while $H(\lambda, \alpha) \to 1$ as $\alpha \to \infty$ (recall $g(0) = 0$). Hence, (6.8) has for each λ a unique solution $\alpha(\lambda)$. As a function of λ, α is continuous and decreasing.

On the other hand $H(\lambda, \cdot) \to \infty$ uniformly in $\alpha \geq 0$ as $\lambda \to 0$ while

$$H(\lambda, \alpha) \to 1 + g \left(h^{-1} \left(\frac{1}{\alpha} \right) \right),$$

uniformly in compacts of $(0, \infty)$ as $\lambda \to \infty$. Thus $\alpha(\lambda) \to \infty$ as $\lambda \to 0$ while $\alpha(\lambda) \to \alpha_\infty$ as $\lambda \to \infty$ where $\alpha = \alpha_\infty$ solves (6.5).

We now set $u_\alpha = u_{\lambda, \alpha(\lambda)}$ and are proving the asymptotic behavior announced in the statement. For the behavior as $\lambda \to 0$ notice that (notation of the proof of Theorem 15 is kept)

$$u_\lambda > U_\gamma$$

with $\gamma = \lambda \alpha(\lambda)$. Thus we are done since

$$\lambda \alpha(\lambda) \to 0 \quad \lambda \to 0.$$

In fact, assume on the contrary that a sequence $\lambda_n \to 0$ exists such that

$$\lambda_n \alpha(\lambda_n) \geq A > 0.$$

Setting $u_n = u_{\lambda_n}$ and observing that $\alpha(\lambda_n) > B > 0$ for large n we easily conclude that

$$u_n(x) \leq v(x) \quad x \in \Omega,$$

where v is the unique solution to

$$\begin{cases}
\Delta v = Av \left(h(v) - \frac{1}{B} \right) & x \in \Omega \\
v = \infty.
\end{cases}$$

But then

$$\int_{\Omega} g(u_n) = O(1),$$

and so $H(\lambda_n, \alpha(\lambda_n)) = O(1)$. This contradicts the fact that $\alpha(\lambda_n) \to \infty$.

With respect to the behavior as $\alpha \to \infty$ observe that

$$u_\alpha = u_{\lambda, \alpha(\lambda)} < u_{\lambda, \alpha_\infty}.$$

Hence,

$$h^{-1} \left(\frac{1}{\alpha(\lambda)} \right) < u_\lambda < u_{\lambda, \alpha_\infty}.$$

This proves the assertion in the statement. □
Remark 6. (i) In the case of the genuine logistic problem (1.2)
\[u_\alpha = u_{\alpha,0(\alpha)} = \alpha(\lambda)^{-\frac{1}{p-1}} v_\alpha \]
where \(v_\alpha \) is the solution to (6.6) corresponding to \(\alpha = 1 \) and \(h(u) = u^{p-1} \), while \(u_\alpha \) is the unique solution to
\[
\alpha = 1 + g(\alpha^{-\frac{1}{p-1}}).
\]
However, no further relevant information is gained in this particular case.

(ii) Consider the finite-valued boundary value problems (1.3) subject to either Dirichlet, Neumann or Robin boundary conditions parameterized by \(\mu > 0 \) (Section 1) and \(\lambda > 0 \) fixed. Then, it can be shown by the methods of this section that each one of such problems exhibits for each \(\mu > 0 \) a unique positive solution \(u^{D}_\mu \), \(u^{N}_\alpha \) and \(u^{R}_\alpha \), respectively. In all cases, such solutions converge to the solution \(u_\alpha \) to (1.2) as \(\mu \to \infty \). To give a brief insight, consider the Dirichlet problem,
\[
\begin{cases}
\Delta u = \lambda u \left(1 + \frac{1}{|\Omega|} \int_{\Omega} g(u) \right) u^{p-1} - 1 & x \in \Omega \\
u = \mu & x \in \Omega.
\end{cases}
\]
Its solution takes the form
\[u^{D}_\mu = \alpha^{-\frac{1}{p-1}} v_\alpha, \]
where \(v_\alpha \) is the solution to
\[
\begin{cases}
\Delta v = \lambda v(u^{p-1} - 1) & x \in \Omega \\
v = \alpha^{-\frac{1}{p-1}} \mu & x \in \Omega,
\end{cases}
\]
and \(\alpha \) solves the equation
\[
\alpha = 1 + \frac{1}{|\Omega|} \int_{\Omega} g(\alpha^{-\frac{1}{p-1}} v_\alpha).
\]
Discussion on the existence, uniqueness and limit profile of \(u^{D}_\mu \) as \(\mu \to \infty \) patterns the ones already performed in this section. The analysis corresponding to the remaining boundary conditions mimics, modulo minor features, the above argument and further details are omitted (see [22] for a study of the same affairs in a class of nonlinear diffusion operators complemented with local reaction terms).

6.2. Exponential nonlinearity. Generalizations

We next describe how other types of nonlinearities could be considered in (1.1). For instance \(f(t) = e^t \), a classical choice in boundary blow-up problems, does not fit the profile in (Hf1). Nevertheless, the arguments in Section 4 still work after suitable modification. Assume for instance that \(g(t) \) is continuous in \(\mathbb{R} \), \(g(-\infty) = \lim_{t \to -\infty} g(t) > -\infty \) while \(g \) is positive and increasing for \(t \geq t_0 \) (other options being here discarded for brevity). Condition (1.5) reads now
\[
\int_{A} e^{-t/2} g(s) \, ds < \infty.
\]
Solution \(u_\alpha \) to the auxiliary problem (2.1) can be expressed as \(u_\alpha = V - \log \alpha \) where \(u_1 = V \) is the solution corresponding to \(\alpha = 1 \). The asymptotic estimate (cf. [23])
\[V(x) = \log d(x)^{-2} + \log 2 + o(1) \quad d(x) \to 0+ \]
permits showing
\[
\lim_{\alpha \to \infty} \frac{1}{|\Omega|} \int_{\Omega} g(V(x) - \log \alpha) \, dx = 1 + g(-\infty),
\]
which together with
\[
\frac{1}{|\Omega|} \int_{\Omega} g(V(x) - \log \alpha) \, dx = o(\alpha^{-1/2}) \quad \alpha \to 0.
\]
Therefore, conclusions of Theorem 2 are valid for problem (1.1) with \(f(t) = e^t \) and \(g \) satisfying the precedent conditions, if one replaces \(g(0) \) with \(g(-\infty) \) in the statement.

A uniqueness result in the vein of Theorem 4 can be obtained by a more selective choice of \(g \). Suppose, for instance that \(g \in C^1(\mathbb{R}) \) is increasing, \(g(-\infty) > -\infty \) while \(\theta > 2 \) exists so that
\[g - \theta g^\prime \geq 0 \quad t \in \mathbb{R}. \]
Then it follows that both \(g, g' \) satisfy (6.9) and the function
\[
H(\alpha) = \alpha \left(1 + \frac{1}{|Q|} \int_Q g(V(x) - \log \alpha) \, dx \right)
\]
has a negative derivative. Therefore, problem (1.1) has a unique solution \(u_\lambda \) for all \(\lambda > 0 \) provided \(1 + g(-\infty) > 0 \).

By employing the methods in this work other variants of problem (1.1) can be dealt with. For instance, the expression \(1/(1 + \frac{1}{|Q|} \int_Q g(u)) \) could be replaced by some general continuous function of the average \(\frac{1}{|Q|} \int_Q g(u) \), say
\[
G \left(\frac{1}{|Q|} \int_Q g(u) \right),
\]
provided \(f \) and \(g \) satisfy \((Hf_1), (Hf_2)\) and \((Hg)\) (in addition (1.5) if \(g \) is not bounded for large \(t \)). Under these conditions, the sign of \(G(g(0)) \) plays the rôle of the sign of \(1 + g(0) \) in Theorem 2. By the same token, provided that \(f \) fulfills either \((Hf_1)\) or (1.7), then condition
\[
\frac{1}{G(t)} = o(t^2) \quad t \to \infty,
\]
ensures the existence of solutions to such general version of (1.1) for small \(\lambda \).

6.3. Further nonlocal problems

A different class of diffusion problems driven by a reaction term of a nonlocal nature arises when the average of \(u \) is replaced by the localized value \(u(x_0) \) of \(u \) at a single given point \(x_0 \in \Omega \) (see [24] where such nonlocal terms are studied in the context of blow-up for parabolic equations). As a simple example, just consider
\[
\begin{align*}
\Delta u &= \frac{\lambda}{1 + u(x_0)} f(u) && x \in \Omega \\
u &= \infty && x \in \partial \Omega,
\end{align*}
\]
(6.10)
\(\Omega \subset \mathbb{R}^N \) a bounded smooth domain where \(f \) satisfies \((Hf_1)\) and \((Hf_2)\). Then the solution \(u = u_\lambda \) to (2.1) defines a solution to (6.10) if and only if
\[
\lambda = H(\alpha) , \quad H(\alpha) := \alpha (1 + u_\alpha(x_0)).
\]
Since, via Theorem 8, \(u_\lambda \to 0 \) uniformly on compacts of \(\Omega \) as \(\alpha \to \infty \), it follows \(H(\alpha) \sim \alpha \) as \(\alpha \to \infty \). Thus, the continuity of \(\bar{H} \) (Lemma 7) implies that (6.10) admits a positive solution \(u_\lambda \) for large \(\lambda \). Moreover
\[
\min_{\Omega} u_\lambda \to 0,
\]
when \(\lambda \to \infty \), for every family \(\{u_\lambda\} \) of positive solutions to (6.10) corresponding to large values of \(\lambda \).

On the other hand, and also due to the continuity of \(\bar{H} \), a positive solution to (6.10) exists for each \(\lambda > 0 \) provided that \(H(\alpha) \to 0 \) as \(\alpha \to 0 \). This amounts to having
\[
\alpha u_\alpha(x_0) \to 0 \quad \text{as} \quad \alpha \to 0.
\]
(6.11)
In order to estimate \(u_\alpha(x_0) \) observe that \(u_\alpha(x_1) \leq u_\alpha(x_0) \leq u_{\alpha,b}(0) \), where \(u = u_{\alpha,b}(x) \) is the solution to (2.1) with \(\Omega = B(0, R) \), and \(R = d(x_0) \), while \(u_\alpha(x_1) \) is the corresponding solution in a strip \(a < x_1 < a + 2L \) enclosing \(\Omega \) in between. By setting \(u^0_\alpha = \min u_\alpha = u_\alpha(a + L) \), \(u^+_\alpha = \min u_\alpha = u_{\alpha,b}(0) \) we get the estimate
\[
u^0_\alpha \leq u_\alpha(x_0) \leq u^+_\alpha,
\]
for all \(\alpha \).

Define
\[
T(t) = \frac{1}{\sqrt{2}} \int_0^\infty (F - F_t)^{-1/2},
\]
\(F_t = F(t) \). Then, it follows from \((Hf_1)\) that \(T \) decreases in \((0, \infty)\). In fact,
\[
T(t) = \frac{1}{\sqrt{2}} \int_0^\infty \left(\int_0^t f(s + t) \right)^{-1/2} \, ds
\]
and since \(f \) is increasing then the integrand strictly decreases with \(t \). Moreover, \(T(0) = \infty \) while \(T(\infty) = 0 \). In addition (see relations (2.7))
\[
\sqrt{R/N} \leq T(u_\alpha^+) \leq T(u_\alpha(x_0)) \leq T(u_\alpha^-) \leq \sqrt{\alpha L},
\]
for all \(\alpha \). Thus
\[
T^{-1}(R\sqrt{\alpha}) \leq u_\alpha(x_0) \leq T^{-1}(R\sqrt{\alpha}/\sqrt{N}).
\]
This means that the complete behavior of \(u_\alpha(x_0) \) as \(\alpha \to 0 \) is dictated by the asymptotic behavior of \(T(t) \) as \(t \to \infty \).

Nevertheless, under the sole condition \((H_{f_2}) \) on \(f \) it follows that (see (4.8))
\[
a\alpha u_\alpha(x_0) \leq K\alpha^{p-2},
\]
for small \(\alpha \). Thus \((6.11)\) holds provided the value of \(p \) in \((H_{f_2})\) satisfies \(p > 2 \). This is just a simple condition ensuring the existence of a solution to \((6.10)\) for all \(\lambda > 0 \). Observe in addition that for small \(\lambda \), positive solutions verify \(\min\Omega u_\lambda \to \infty \) as \(\lambda \to 0 \).

Finally, some light on the possible responses when \(1 < p \leq 2 \) can be cast by testing the nonlinearity \(f(t) = t^p \). Being in this case \(u_\alpha(x_0) = \lambda^{1/(p-1)}U(x_0) \) (Section 5) an explicit value \(\lambda^* > 0 \) can be found such that, for \(1 < p < 2 \), no solutions exist for \(0 < \lambda < \lambda^* \), meanwhile \((6.10)\) has exactly two solutions for \(\lambda > \lambda^* \) and a unique one at \(\lambda = \lambda^* \). For \(p = 2 \) a unique solution exists only when \(\lambda \geq \lambda^* > 0 \). Roughly speaking, the same response is found for a general \(f \) which slowly varies with index \(1 < p < 2 \) at infinity.

Acknowledgments

Supported by Spanish Ministerio de Ciencia e Innovación and FEDER under grant MTM2008-05824.

References