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Abstract. In this work we discuss existence, uniqueness and asymptotic profiles of positive solutions to the quasilinear problem{
−Δpu + a(x)up−1 = −ur in Ω,

|∇u|p−2 ∂u

∂ν
= λup−1 on ∂Ω

for λ ∈ R, where r > p − 1 > 0, a ∈ L∞(Ω). We analyze the existence of solutions in terms of a principal eigenvalue, and
determine their asymptotic behavior both when r → p − 1 and when r → ∞.
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1. Introduction

The aim of the present paper is to analyze some qualitative features exhibited by the positive solutions
to ⎧⎨

⎩
−Δpu(x) + a(x)up−1(x) = −ur(x), x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = λup−1(x), x ∈ ∂Ω,

(1.1)

where λ ∈ R, r > p − 1 > 0, Ω is a class C2,α bounded domain of R
N (N � 2), 0 < α � 1, and

ν stands for the outward unit normal field on ∂Ω. The operator Δp is the standard p-Laplacian, which is
defined in the usual weak sense of W 1,p(Ω) as Δpu = div(| ∇u|p−2 ∇u). In addition, it will be assumed
throughout that a ∈ L∞(Ω). The main feature of problem (1.1) is its dependence on the parameter λ
precisely in the boundary condition.

*On leave from Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1, (1428), Buenos Aires, Argentina.

0921-7134/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved



148 J. García-Melián et al. / Limit cases in an elliptic problem

Problem (1.1) was studied in [4] when p = 2 (in this case Δp is the usual Laplacian) with fixed
r > 1 and a = 0. Under these conditions, it was shown there that this problem admits a unique positive
solution ur,λ for every λ > 0, and no positive solutions when λ � 0. It was further shown that ur,λ is
continuous and increasing as a function of λ, and its asymptotic behavior when λ → 0 and λ → ∞ was
also completely elucidated (see [4] for additional features). However, as far as we know, the dependence
of ur,λ on r has not yet been clarified. Thus, one of the objectives of this work is to analyze the variation
of ur,λ with respect to r, especially in the extreme cases where r → 1+ or r → ∞. This study will be
indeed extended to cover the more general problem (1.1).

To deal with the quasilinear problem (1.1), a number of auxiliary results must be developed. In partic-
ular, a study of the flux-type eigenvalue problem⎧⎨

⎩
−Δpu(x) + a(x)|u|p−2u(x) = μ|u|p−2u(x), x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = λ|u|p−2u(x), x ∈ ∂Ω,

(1.2)

where λ is regarded as a parameter and it is assumed that a ∈ L∞(Ω). A number μ ∈ R is said to be an
eigenvalue to (1.2) if there exists φ ∈ W 1,p(Ω), not vanishing identically in Ω, so that∫

Ω

(
| ∇φ|p−2 ∇φ∇ϕ + a(x)|φ|p−2φϕ

)
dx = λ

∫
∂Ω

|φ|p−2φϕ dS + μ

∫
Ω

|φ|p−2φϕ dx

for all ϕ ∈ W 1,p(Ω). In that case, φ is called an eigenfunction associated to μ.
Problem (1.2) has been studied in detail in [5] when p = 2, in which case it becomes⎧⎨

⎩
−Δu(x) + a(x)u(x) = μu(x), x ∈ Ω,
∂u

∂ν
(x) = λu(x), x ∈ ∂Ω.

(1.3)

The next statement is the extension to problem (1.2) of the corresponding results obtained for (1.3)
contained in [5] (a slightly more general version of (1.3) was in fact considered there).

Theorem 1. Problem (1.2) admits, for every λ ∈ R, a unique principal eigenvalue μ = μ1,p, i.e., an
eigenvalue with a nonnegative associated eigenfunction φ ∈ W 1,p(Ω). It is given by the variational
expression

μ1,p = inf
u∈W 1,p(Ω),u�=0

∫
Ω(| ∇u|p + a|u|p) dx − λ

∫
∂Ω |u|p dS∫

Ω |u|p dx
.

In addition, the following properties hold true.

(i) μ1,p is the unique principal eigenvalue.
(ii) μ1,p is isolated and simple.

(iii) Every associated eigenfunction φ1 ∈ W 1,p(Ω) to μ1,p satisfies φ ∈ L∞(Ω) and furthermore
φ ∈ C1,β(Ω) ∩ C2,α(Uη) for certain β ∈ (0, 1), η > 0, with Uη = {x ∈ Ω: dist(x, ∂Ω) < η}.

(iv) As a function of λ, μ1,p is concave, decreasing and verifies

lim
λ→−∞

μ1,p = λ1,p(a), lim
λ→∞

μ1,p = − ∞,

where λ1,p(a) is the first Dirichlet eigenvalue of −Δpu + a(x)|u|p−2u in Ω.
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Another auxiliary eigenvalue problem we will need is

⎧⎨
⎩

−Δpu(x) + a(x)|u|p−2u(x) = 0, x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = σ|u|p−2u(x), x ∈ ∂Ω,

(1.4)

which constitutes an extension to the p-Laplacian setting of the well-known Steklov problem (see [12]
for a detailed analysis of the case a = 0). As a direct consequence of Theorem 1 the following statement
holds true.

Theorem 2. Problem (1.4) possesses a principal eigenvalue if and only if

λ1,p(a) > 0. (1.5)

Furthermore:

(i) Provided that (1.5) is satisfied, (1.4) admits a unique principal eigenvalue σ1,p which is isolated
and simple. In addition,

sign σ1,p = sign λN
1,p(a), (1.6)

where λN
1,p(a) stands for the first Neumann eigenvalue of −Δpu + a(x)|u|p−2u in Ω.

(ii) Any eigenfunction ψ ∈ W 1,p(Ω) associated to σ1,p satisfies ψ ∈ C1,β(Ω) ∩ C2,α(Uη) for certain
β ∈ (0, 1), η > 0, with Uη = {x: dist(x ∈ Ω, ∂Ω) < η}.

Remark 1. We will set σ1,p = − ∞ when λ1,p(a) � 0, for reasons that will become clear later on (see
(1.8) in Theorem 4 and Remark 3).

The well-known sub- and super-solutions method is another tool that must be properly adapted to
problem (1.1). A function u ∈ W 1,p(Ω) is said to be a super-solution to problem

⎧⎨
⎩

−Δpu(x) + a(x)|u|p−2u(x) = f (x, u), x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = g(x, u), x ∈ ∂Ω,

(1.7)

if ∫
Ω

(
| ∇u|p−2 ∇u∇ϕ + a(x)|u|p−2uϕ

)
dx �

∫
∂Ω

g(x, u)ϕ dS +
∫

Ω
f (x, u)ϕ dx

holds for all nonnegative ϕ ∈ W 1,p(Ω). Subsolutions are defined in a symmetric way. Of course, the
existence of the integrals involving f and g is implicitly assumed.

In order to avoid the use of comparison, which is certainly a delicate issue when dealing with the
p-Laplacian, the next statement furnishes a variational version of the method of sub- and super-solutions
for problem (1.7) (cf. also [14]). Recall that a function h : X × R → R, (X , μ) a measure space, is a
Carathéodory function if h(·, u) is measurable in X for all u ∈ R while h(x, ·) is continuous in R for
almost all x ∈ X .
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Theorem 3. Let f : Ω × R → R, g : ∂Ω × R → R be Carathéodory functions satisfying |f (x, u)| � M
and |g(x, u)| � M if (x, u) ∈ Ω × (−R, R) and (x, u) ∈ ∂Ω × (−R, R), respectively, for arbitrary R,
where M = M (R). Suppose u, u ∈ W 1,p(Ω) ∩ L∞(Ω) ∩ L∞(∂Ω) are a sub- and a super-solution
to (1.7) so that u � u a.e. in Ω. Then (1.7) admits a solution u ∈ W 1,p(Ω) verifying

u � u � u,

a.e. in Ω.

After these preliminary tools have been introduced, we can state a first group of results concerning
problem (1.1).

Theorem 4. Assume Ω ⊂ R
N is a class C2,α bounded domain and r > p − 1 > 0. Then the following

properties hold:

(i) Problem (1.1) admits a positive solution if and only if

λ > σ1,p, (1.8)

where the value σ1,p = − ∞ is allowed. When (1.8) holds, the positive solution is unique, and it
will be denoted by ur,λ ∈ W 1,p(Ω).

(ii) The function ur,λ belongs to C1,β(Ω) ∩ C2,α(Uη) for a certain β ∈ (0, 1) and η > 0 small enough,
where Uη = {x ∈ Ω: dist(x, ∂Ω) < η}.

(iii) The mapping λ → ur,λ is increasing and continuous with values in C1(Ω). Moreover,

lim
λ→σ1,p+

ur,λ = 0 (1.9)

in C1,β(Ω) provided σ1,p > − ∞. If σ1,p = − ∞ then

lim
λ→σ1,p+

ur,λ =
{

0 if λ1,p(a) = 0,
w if λ1,p(a) < 0,

(1.10)

where u = w(x) stands for the unique positive solution to

{ −Δpu(x) + a(x)|u|p−2u(x) = −ur(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(1.11)

when λ1,p(a) < 0.
(iv) Let u = U (x) be the minimal solution to the singular boundary value problem{

−Δpu(x) + a(x)|u|p−2u(x) = −ur(x), x ∈ Ω,
u = ∞, x ∈ ∂Ω.

(1.12)

Then,

lim
λ→∞

ur,λ = U (1.13)

in C1(Ω).



J. García-Melián et al. / Limit cases in an elliptic problem 151

We turn now to study the asymptotic behavior of the positive solution ur,λ to (1.1) both as r →
(p − 1)+ and when r → ∞. Let us begin with the former case and to this purpose notice that Theo-
rem 1(iv) implies the existence of a value λ∗ such that

μ1,p
(
λ∗)

= −1,

provided that λ1,p(a) > −1 (λ1,p(a) being the principal Dirichlet eigenvalue of −Δpu + a(x)|u|p−2u
in Ω). Observe that

σ1,p < λ∗,

even in the case when σ1,p = − ∞, while

0 < −μ1,p(λ) < 1 for σ1,p < λ < λ∗.

Of course, the inequality holds for all λ < λ∗ if σ1,p = − ∞. Similarly,

−μ1,p(λ) > 1 if λ > λ∗.

On the other hand,

−μ1,p(λ) > 1 for all λ

in the complementary case λ1,p(a) � −1 where the value λ∗ does not exist.
Then we have the following theorem.

Theorem 5. For λ > σ1,p � − ∞, let u = ur,λ be the unique positive solution to problem (1.1) for
r > p − 1. Then,

(
sup
Ω

ur,λ

)r−p+1
= −μ1,p(λ) + o(1)

as r → (p − 1)+ while

ur,λ =
(

sup
Ω

ur,λ

){
φ1(λ) + o(1)

}

in C1(Ω) as r → (p − 1)+, where φ1(λ) stands for the positive eigenfunction associated to μ1,p(λ)
normalized so as supΩ φ1(λ) = 1. In particular

(a) ur,λ → 0 uniformly in Ω as r → (p − 1)+ if λ < λ∗ provided that λ1,p(a) > −1.
Moreover, for λ = λ∗ and p = 2 in problem (1.1) then

ur,λ → Aφ1
(
λ∗)

uniformly in Ω as r → (p − 1)+ where A is given by

A = exp
(

−
∫
Ω φ2

1 log φ1 dx∫
Ω φ2

1 dx

)
. (1.14)
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(b) ur,λ → ∞ uniformly in Ω as r → (p − 1)+ either when λ > λ∗ if λ1,p(a) > −1 or for all λ ∈ R

provided λ1,p(a) � −1.

Note that in the previous theorem the case λ = λ∗ with p �= 2 is left open.
As for the behavior of the solution ur,λ to (1.1) when r → ∞ the first interesting conclusion is that

for every λ > σ1,p, ur,λ keeps uniformly bounded in Ω as r → ∞. On the other hand, provided that
coefficient a = 0 in (1.1) we achieve a better result. Namely, solutions become flat throughout the
domain Ω as r increases.

Theorem 6. Assume that a = 0 in problem (1.1). Then, for any λ > σ1,p we have ur,λ → 1 uniformly
in Ω as r → ∞.

It should be mentioned that a similar analysis for the logistic problem

{ −Δu(x) = λu(x) − b(x)ur(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(1.15)

which is somehow related to (1.1), was performed in [2,3]. However, the situation was substantially
different there when r → ∞, since the limit problem so obtained is of a free boundary type, mainly due
to the Dirichlet condition. On the other hand, if u = ũr,λ stands for the unique positive solution to (1.15)
for λ > λD

1 (the first Dirichlet eigenvalue of −Δ in Ω), an important feature in the analysis in [3] is the
fact that

(
sup
Ω

ũr,λ

)r−1

remains bounded as r → ∞. This follows easily from the boundary condition when b > 0 in Ω. This
fact is in strong contrast with the next result.

Theorem 7. Let a ∈ L∞(Ω). Then, for fixed λ > σ1,p

φ1(λ) � lim
r→∞

ur,λ � lim
r→∞

ur,λ � 1,

where φ1(λ) is the positive eigenfunction associated to μ1,p(λ) normalized so that sup φ1(λ) = 1. In
particular,

lim
r→∞

sup
Ω

ur,λ = 1.

However, if either a = 0 or a ∈ L∞(Ω) is arbitrary but λ > σ1(|a| ∞) in (1.1) then

lim
r→∞

sup
Ω

(ur,λ)r−p+1 = ∞.

The rest of the paper is organized as follows: in Section 2 we analyze the eigenvalue problems (1.2)
and (1.4). Section 3 is dedicated to develop the method of sub- and super-solutions for problem (1.7),
that will be used here for the proof of Theorem 4. Finally, in Section 4 the asymptotic behavior of the
positive solution to (1.1) as r → p − 1 and r → +∞ is considered.
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2. Eigenvalue problems

In this section we perform the analysis of the eigenvalue problems (1.2) and (1.4). We begin with a
fundamental result concerning the boundedness of eigenfunctions.

Lemma 8. Let φ ∈ W 1,p(Ω) be an eigenfunction associated to an arbitrary eigenvalue μ of (1.2). Then
φ ∈ L∞(Ω).

Proof. Notice that we may assume 1 < p � N , since otherwise W 1,p(Ω) ⊂ L∞(Ω). Also, for the sake
of simplicity we will only consider p < N , the case p = N being handled in a similar way.

For k > 0 set v = (φ − k)+, Ak = {x ∈ Ω: φ(x) > k}. We show an estimate of the form

|v|1 � Ckδ |Ak |1+ε (2.1)

for every k � k0 and certain positive constants k0, C, δ, ε with δ � 1 + ε, where |v|1 = |v|L1(Ω).
By using v as a test function in the equation for φ we obtain

∫
Ω

(
| ∇v|p + ϕp(φ)v

)
dx � λ

∫
∂Ω

ϕp(φ)v dS +
(
μ + |a| ∞ + 1

) ∫
Ω

ϕp(φ)v dx

� C

{∫
∂Ω

ϕp(φ)v dS +
∫

Ω
ϕp(φ)v dx

}
, (2.2)

where ϕp(φ) = |φ|p−2φ and C will stand in the sequel for a positive constant independent of φ and k,
not necessarily the same everywhere.

Next notice that 0 < v < φ in the support of v and φ � v + k, hence ϕp(φ) � C(vp−1 + kp−1).
Thus (2.2) implies

|v|p1,p � C

{∫
∂Ω

vp dS + kp−1
∫

∂Ω
v dS +

∫
Ω

vp dx + kp−1
∫

Ω
v dx

}
(2.3)

for all k > 0, where |v|1,p = |v|W 1,p(Ω).
On the other hand, we notice that, thanks to Hölder’s and Sobolev’s inequalities:

∫
Ω

vp dx � |Ak |p/N
(∫

Ω
vp∗

dx

)p/p∗

� C|Ak |p/N
(∫

Ω
| ∇v|p dx +

∫
Ω

vp dx

)
,

where p∗ = Np
N −p , and, since |Ak | → 0,

∫
Ω

vp dx � C|Ak |p/N
∫

Ω
| ∇v|p dx (2.4)

for k � k0 and certain positive k0.
Furthermore, it is useful to recall that for every ε > 0 there exists a constant C(ε) > 0 such that

∫
∂Ω

|u|p dS � ε

∫
Ω

| ∇u|p dx + C(ε)
∫

Ω
|u|p dx (2.5)
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for every u ∈ W 1,p(Ω) (see, for instance, [5], Lemma 6, for a proof when p = 2). This inequality
combined with (2.4) yields

∫
∂Ω

vp dS �
(
ε + C(ε)|Ak |p/N) ∫

Ω
| ∇v|p dx (2.6)

for k � k0. Inequalities (2.3), (2.4) and (2.6) imply, taking ε sufficiently small,

|v|p1,p � Ckp−1{|v|1,∂Ω + |v|1
}

(2.7)

for k � k0, where |v|1,∂Ω = |v|L1(∂Ω).
Observe now that, thanks to the immersion W 1,1(Ω) ⊂ L1(∂Ω) and Hölder’s inequality

|v|1,∂Ω � C|v|W 1,1(Ω) � C|Ak |1−1/p|v|1,p,

while the Sobolev immersion gives

|v|1 � C|Ak |1−1/p∗ |v|1,p. (2.8)

Thus, from (2.7) we get

|v|1,p � Ck
{

|Ak |1/p + |Ak |1/(p−1)(1−1/p∗ )} � Ck|Ak |1/p

for all k � k0, since 1
p < 1

p−1 (1 − 1
p∗ ) and |Ak | → 0. This inequality allows us to conclude, thanks

to (2.8), that

|v|1 � Ck|Ak |1+1/N (2.9)

for large k, which is the desired inequality.
Finally, when (2.9) is combined with [9], Chapter 2, Lemma 5.1, we obtain φ+ ∈ L∞(Ω), and since

−φ is also an eigenfunction, the preceding argument also says that φ ∈ L∞(Ω). �

Remark 2. Lemma 8 can be also shown by means of a Moser’s iteration procedure following the ideas
in [5] (see Lemma 5 there).

Proof of Theorem 1. To show the existence of a principal eigenvalue we borrow ideas from [5],
Lemma 7. Thus, consider M := {u ∈ W 1,p(Ω):

∫
Ω |u|p = 1}, and the functional

J(u) =
∫

Ω

(
| ∇u|p + a(x)|u|p

)
dx − λ

∫
∂Ω

|u|p dS.

Inequality (2.5) implies that

J(u) �
(
1 − ε|λ|

) ∫
Ω

| ∇u|p dx −
(

|a| ∞ + C(ε)|λ|
) ∫

Ω
|u|p dx
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for all u ∈ W 1,p(Ω). This means that J is coercive in M and the direct method in the calculus of
variations (see [14], Theorem 1.2) implies the finiteness of

μ1,p = inf
u∈W 1,p(Ω),u�=0

∫
Ω(| ∇u|p + a(x)|u|p) dx − λ

∫
∂Ω |u|p dS∫

Ω |u|p dx

and the existence of φ ∈ W 1,p(Ω) such that the infimum is achieved at u = φ. Since the infimum is also
attained at |φ|, it is easily checked that |φ| defines an eigenfunction associated to μ1,p, hence μ1,p is a
principal eigenvalue.

Next, let φ ∈ W 1,p(Ω) be a nonnegative eigenfunction associated to μ1,p. Lemma 8 and Lieberman’s
regularity results [10] imply that φ ∈ C1,β(Ω) for a certain 0 < β < 1 while the Strong Maximum
Principle in [15] implies that φ > 0 throughout Ω together with | ∇φ| > 0 in some strip Uη = {x ∈
Ω: dist(x, ∂Ω) < η}. Then, the equation for φ becomes strictly elliptic in Uη and standard theory of
quasilinear equations yields φ ∈ C2,α(Uη) (cf. [9]).

As a consequence of the preceding assertions it follows that every eigenfunction φ associated to μ1,p

is either positive or negative in Ω. In fact, if φ+ �= 0 then, since φ+ is also an eigenfunction associated
to μ1,p, we get φ+ > 0 in Ω. Thus, φ− = 0 and φ is positive.

We show now the simplicity of μ1,p. To this purpose, for two positive eigenfunctions φ, ψ associated
to μ1,p consider the integral

I :=
∫

Ω

{
| ∇φ|p−2 ∇φ∇

(
φp − ψp

φp−1

)
− | ∇ψ|p−2 ∇ψ∇

(
φp − ψp

ψp−1

)}
dx.

Under the sole assumption that both φ, ψ ∈ W 1,p(Ω) are positive and bounded in Ω it follows that I � 0,
and I = 0 only when ψ = cφ for a positive constant c. This is a consequence of the analysis in [11]. For
the reader’s benefit we sketch the argument. In fact,

I =
∫

Ω

(
φp − ψp)(| ∇ log φ|p − | ∇ log ψ|p

)
dx

−
∫

Ω
pψp| ∇ log φ|p−2(∇ log φ)(∇ log ψ − ∇ log φ) dx

−
∫

Ω
pφp| ∇ log ψ|p−2(∇ log ψ)(∇ log φ − ∇ log ψ) dx.

Hence, by using the convexity of function |x|p with p > 1 ([11], inequality (4.1)) we infer that I � 0,
and moreover I = 0 only when ψ = cφ for a positive constant c. Thus the simplicity of μ1,p is proved.

The same argument implies that μ1,p is the unique principal eigenvalue. In fact, suppose that φ is a
positive eigenfunction associated to μ1,p while μ �= μ1,p is another eigenvalue which possesses a positive
eigenfunction ψ. In this case, if we use (φp − ψp)/φp−1 as a test function in the equation for φ as an
eigenfunction associated to μ1,p and similarly employ (φp − ψp)/ψp−1 in the equation for ψ then, after
subtracting the resulting equalities, we arrive at

I = (μ1,p − μ)
∫

Ω

(
φp − ψp) dx � 0.
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However, μ > μ1,p and φ can be chosen greater than ψ in Ω. Since this contradicts the inequality, such
an eigenvalue μ cannot exist.

To show the isolation of μ1,p we follow the spirit of the corresponding statement in [1] (see also [12]
for the case of the principal eigenvalue of (1.4) and a = 1), which we simplify in view of Lemma 8.
Thus, assume on the contrary that there exists a sequence of eigenvalues μn �= μ1,p with associated
eigenfunction φn normalized by

∫
Ω |φn|p = 1 for all n, verifying μn → μ1,p. Notice that φ±

n �= 0 for
all n. Then, from the weak formulation of (1.2), we obtain∫

Ω

(
| ∇φn|p + a|φn|p

)
dx − λ

∫
∂Ω

|φn|p dS = μn.

By means of (2.5) we see that |φn|1,p is bounded and so, passing to a subsequence, φn ⇀ φ1 weakly in
W 1,p(Ω). It follows that φ1 is a principal eigenfunction which can be assumed to be positive.

On the other hand, from the weak formulation of the equation satisfied by φn and by using φ−
n as a

test function, arguments similar as the ones employed in Lemma 8 show that

∣∣φ−
n

∣∣p
1,p � C

∫
Ω

∣∣φ−
n

∣∣p dx

for a positive constant C, not depending on n. Hence

∣∣{φn < 0}
∣∣ � k > 0 (2.10)

for some k > 0 and all n. However, since modulus a subsequence, φn → φ1 in Lp(Ω) and φ1 is positive,
Egorov’s theorem implies that the uniform estimate (2.10) is not possible. Therefore, μ1,p is isolated.

Finally, the features and asymptotic behavior of μ1,p(λ) contained in statement (iv) can be shown by
following the corresponding proof of Lemma 8 in [5]. �

Proof of Theorem 2. By using the terminology of Theorem 1, the key point is that σ is a principal
eigenvalue of (1.4) if and only if

μ1,p(σ) = 0.

In view of property (iv) in Theorem 1 it is clear that (1.5) characterizes the existence of a zero of μ1,p

and so it characterizes the existence of a unique principal eigenvalue σ := σ1,p of (1.4) as well.
In addition∫

Ω

(
| ∇ψ|p + a|ψ|p

)
dx − σ

∫
∂Ω

|ψ|p dS = 0

if σ is a principal eigenvalue. Since λ1,p(a) > 0 it follows that ψ �= 0 on ∂Ω and so

σ1,p =
∫
Ω(| ∇ψ|p + a|ψ|p) dx∫

∂Ω |ψ|p dS
�

∫
Ω(| ∇u|p + a|u|p) dx∫

∂Ω |u|p dS
(2.11)

for all u ∈ W 1,p(Ω), u �= 0 on ∂Ω. Thus, σ = σ1,p also defines the first eigenvalue to (1.4). Relation (1.6)
follows from the decreasing character of μ1,p and the fact that λN

1,p = μ1,p(0).
The remaining assertions in Theorem 2 are consequences of Theorem 1. �
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Remark 3. Inequality (2.11) states

σ1,p = inf
u∈W 1,p(Ω),u�=0

∫
Ω(| ∇u|p + a|u|p) dx∫

∂Ω |u|p dS
. (2.12)

As already seen, such infimum is finite when λ1,p(a) > 0. However, it can be checked that the infimum
is − ∞ when λ1,p(a) � 0 (details are omitted for brevity). This suggests setting σ1,p = − ∞ in that case.

3. Existence and uniqueness

Our first objective is to prove the variational version of the method of sub- and super-solutions. For
p > 1 we recall the notation ϕp(t) = |t|p−2t.

Proof of Theorem 3. Following the ideas in [14], Theorem 2.4, we introduce the functional

J(u) =
∫

Ω

{
1
p

| ∇u|p +
a(x)
p

|u|p − F (x, u)
}

dx −
∫

∂Ω
G(x, u) dS

with F (x, u) =
∫ u

0 f (x, t) dt for x ∈ Ω, G(x, u) =
∫ u

0 g(x, t) dt for x ∈ ∂Ω, which we consider in the
convex set

M =
{
u ∈ W 1,p(Ω): u � u � u a.e. in Ω

}
.

Notice that M defines a weakly closed subset of W 1,p(Ω). The functional J is sequentially lower semi-
continuous and since both u, u are bounded it is coercive in M. Thus J achieves its infimum at some
u ∈ M and we are showing that u is a weak solution to (1.7). For this, it is enough to show that
DJ[u](ϕ) � 0 for every ϕ ∈ C1(Ω).

To such proposal, for ε > 0 and arbitrary ϕ ∈ C1(Ω) we set

ϕε,+ = (u + εϕ − u)+, ϕε,− = (u − u − εϕ)+

and observe that

uε := u + εϕ − ϕε,+ + ϕε,− ∈ M

for all 0 < ε < ε0. By taking the derivative of J at u in the direction of uε − u we get

DJ(u)[uε − u] � 0.

This implies that,

εDJ(u)[ϕ] � DJ(u)[ϕε,+] − DJ(u)[ϕε,−] (3.1)

and we are showing next that

DJ(u)[ϕε,+] � ρ(ε),
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where ρ(ε) = o(ε) as ε → 0+. In fact, since DJ(u)[ϕε,+] � 0,

DJ(u)[ϕε,+] �
(
DJ(u) − DJ(u)

)
[ϕε,+]

and

(
DJ(u) − DJ(u)

)
[ϕε,+]

=
∫

Ω

(
| ∇u|p−2 ∇u − | ∇u|p−2 ∇u

)
∇ϕε,+ dx +

∫
Ω

a(x)
(
ϕp(u) − ϕp(u)

)
ϕε,+ dx

−
∫

Ω

(
f (x, u) − f (x, u)

)
ϕε,+ dx −

∫
∂Ω

(
g(x, u) − g(x, u)

)
ϕε,+ dS. (3.2)

By using the monotonicity of the p-Laplacian,
∫

Ω

(
| ∇u|p−2 ∇u − | ∇u|p−2 ∇u

)
∇ϕε,+ dx

� ε

∫
{ϕε,+>0}

(
| ∇u|p−2 ∇u − | ∇u|p−2 ∇u

)
∇ϕ dx

� ε

∫
{ϕε,+>0}∩{u>u}

(
| ∇u|p−2 ∇u − | ∇u|p−2 ∇u

)
∇ϕ dx, (3.3)

since ∇u = ∇u almost everywhere in {u = u} [8]. Observe now that |{ϕε,+ > 0} ∩ {u > u}| → 0 as
ε → 0+ and so the latter integral in (3.3) is o(ε) as ε → 0+.

On the other hand, |ϕε,+| < ε|ϕ| in {ϕε,+ > 0} ∩ {u > u}. Hence,

∣∣∣∣
∫

Ω

(
f (x, u) − f (x, u)

)
ϕε,+ dx

∣∣∣∣ � ε

∫
{ϕε,+>0} ∩ {u>u}

∣∣f (x, u) − f (x, u)
∣∣|ϕ| dx = o(ε) (3.4)

as ε → 0+. The remaining terms in (3.2) can be treated in the same way and so we achieve that,

DJ(u)[ϕε,+] � o(ε), ε → 0+.

A complementary argument shows that DJ(u)[ϕε,−] � o(ε) as ε → 0+. Therefore, (3.1) implies that

DJ(u)[ϕ] � 0

for arbitrary ϕ ∈ C1(Ω). This means that u is a solution to (1.7). �

Remark 4. Theorem 3 can be extended to cover slightly more general settings. Namely, suppose that
Ω ⊂ R

N is smooth and ∂Ω = Γ1 ∪ Γ2 with Γ1, Γ2 disjoint (N − 1)-dimensional closed manifolds.
Consider the mixed problem

⎧⎪⎪⎨
⎪⎪⎩

−Δpu(x) + a(x)|u|p−2u(x) = f (x, u), x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = g(x, u), x ∈ Γ1,

u(x) = h(x), x ∈ Γ2,

(3.5)
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with h ∈ L∞(Γ2). Then, under the extra condition

u � h � u on Γ2

and the hypotheses of Theorem 3 we achieve again a solution u ∈ W 1,p(Ω) to (3.5) lying between u
and u. The proof runs by the same lines of Theorem 3. As minor modifications, we have to take care
of the condition u = h on Γ2 that must be incorporated to the definition of M and testing must be
performed with functions ϕ ∈ W 1,p(Ω) vanishing on Γ2.

As an immediate application of Theorem 3 we undertake the proof of Theorem 4.

Proof of Theorem 4. To prove the necessity of (1.8) we only consider, obviously, the case σ1,p > − ∞.
If a positive solution u to (1.1) exists then u �= 0 on ∂Ω. Otherwise,

−Δpu + aϕp(u) � 0

implies u � 0 in Ω if u∂Ω = 0 (notice that σ1,p is finite if and only if λ1,p(a) > 0). Thus, since u �= 0 on
∂Ω we conclude that

σ1,p �
∫
Ω(| ∇u|p + a|u|p) dx∫

∂Ω |u|p dS
< λ.

Assume now that λ > σ1,p � − ∞. Let φ1(λ) denote the principal positive eigenfunction satisfying
supΩ φ1(λ) = 1. Then it can checked that u = Aφ1(λ), u = Bφ1(λ) define a sub-solution and a super-
solution to (1.1) provided that

0 < A � (−μ1,p)1/(r−p+1), B � (−μ1,p)1/(r−p+1)

inf φ1(λ)
.

Notice that a choice of A and B for all values of λ is possible when σ1,p = − ∞. Thus, for suitable
values of A and B we obtain, via Theorem 3, a positive solution to (1.1).

As for the uniqueness of a positive solution to (1.1) we first assert that all positive solutions u ∈
W 1,p(Ω) lie in L∞(Ω). In fact, observe that by setting v = (u − k)+, k > 0, and employing v as a test
function in the equation for u we arrive at

∫
Ω

(
| ∇v|p + a(x)ϕp(u)v

)
dx � |λ|

∫
∂Ω

ϕp(u)v dS.

By adding to both sides of the inequality a term M
∫
Ω ϕp(u)v with large enough M we get

|v|p1,p � C

{∫
Ω

ϕp(u)v dx +
∫

∂Ω
ϕp(u)v dS

}
.

But such an estimate (see (2.2) and (2.3)) is just the starting point that leads to the boundedness of u if
one proceeds as in Lemma 8. Thus u ∈ L∞(Ω). Notice in passing that the same argument works for the
mixed problem (3.5) with f = −ur, g = λϕp(u) since the test function v = (u − k)+ vanishes on Γ2

provided that k � |h| ∞.
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Since a positive solution u ∈ W 1,p(Ω) is bounded, then u ∈ C1,β(Ω) ∩ C2,α(Uη) by the same
reasons as those providing the smoothness of the eigenfunction φ1 in Theorem 1. Hence, for two positive
solutions u1, u2 to (1.1) we can consider the test functions ϕ1 = (up

1 − up
2)/up−1

1 , ϕ2 = (up
1 − up

2)/up−1
2 .

With them we obtain the inequality (see [11])

I =
∫

Ω

(
| ∇u1 |p−2 ∇u1 ∇ϕ1 − | ∇u2 |p−2 ∇u2 ∇ϕ2

)
dx � 0.

However, since

I = −
∫

Ω

(
ur−p+1

1 − ur−p+1
2

)(
up

1 − up
2

)
dx,

then u1 = u2 is the unique option permitted by the former inequality. Thus, (1.1) admits a unique positive
solution.

Regarding (iii), that ur,λ increases with λ is implied by the fact that ur,λ is sub-solution to (1.1) with λ
replaced by λ′ � λ. The uniqueness of positive solutions together with the existence, via [10], of uniform
C1,β bounds of ur,λ when λ varies in bounded intervals, yield the continuous dependence of ur,λ with
values in, say, C1(Ω). Moreover, such continuity and the nonexistence of positive solutions for λ = σ1,p

entail (1.9) when σ1,p > − ∞.
To show (1.10), assume σ1,p = − ∞, take λn → − ∞ and set un = ur,λn . From the equality

∫
Ω

(
| ∇un|p + aup

n

)
dx + (−λn)

∫
∂Ω

up
n dS +

∫
Ω

ur+1
n dx = 0,

together with the fact 0 < un � un0 ∈ L∞(Ω) for n � n0 we conclude, passing to a subsequence, that
un ⇀ u weakly in W 1,p(Ω), with u � 0. Since

(−λn)
∫

∂Ω
up

n dS = O(1),

we have u = 0 on ∂Ω. By using test functions in W 1,p
0 (Ω) in the weak formulation of the equation for

un and passing to the limit, we see that u defines a solution to

−Δpu + aϕp(u) = −ur

in Ω. When λ1,p(a) = 0, this yields u = 0, so that ur,λ → 0 in W 1,p(Ω) as λ → − ∞.
On the other hand, when λ1,p(a) < 0 we obtain that u > 0 in Ω. In fact, let φn be the positive

eigenfunction associated to μ1,p(λn), normalized by supΩ φn = 1. Then we have

{
−μ1,p(λn)

}1/(r−p+1)
φn � un in Ω. (3.6)

Next take αn such that φ̂n = αnφn verifies |φ̂n|p = 1 and observe that αn � |Ω| −1. We find that
φ̂n ⇀ φ̂ weakly in W 1,p(Ω), where φ̂ > 0 (indeed |φ̂|p = 1). On the other hand, a careful analysis of
the proof of Lemma 8 reveals that

sup αn < ∞.
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Hence we achieve, by passing to a subsequence if necessary,

φn ⇀
1
θ
φ̂,

weakly in W 1,p(Ω), where θ := lim αn > 0. Passing to the limit in (3.6), we finally obtain

θ−1(−λ1,p(a)
)1/(r−p+1)

φ̂ � u

in Ω. Thus, u > 0, and it defines the unique positive solution to (1.11) when λ1,p(a) < 0. By uniqueness,
we obtain un → u weakly in W 1,p(Ω). This concludes the proof of (iii).

The proof of part (iv) will be included in the next section. �

4. Limit profiles

To prove Theorem 5 our first ingredient is a property on the maximum of solutions to (1.1) with
varying r. The proof is based on a simple comparison argument.

Lemma 9. For r > p − 1 let Mr,λ := supΩ ur,λ. Then M r−p+1
r,λ is an increasing function of r.

Proof. Assume r > q > p − 1 > 0. Then we clearly have

−Δpur,λ + aϕp(ur,λ) = −ur,λ
r � −M r−q

r,λ ur,λ
q in Ω,

while the boundary condition rests unchanged. It follows that the function

u = M
(r−q)/(q−p+1)
r,λ ur,λ

is a super-solution to problem (1.1) with r replaced by q. Since u = εuq,λ is a small enough sub-solution

(for small ε) we obtain by uniqueness u � uq,λ. Thus M
(r−p+1)/(q−p+1)
r,λ � Mq,λ, which is the desired

inequality. �

We can now proceed to prove Theorem 5.

Proof of Theorem 5. Let vr = ur,λ/Mr,λ. This function verifies

⎧⎪⎨
⎪⎩

−Δpv(x) + avp−1(x) = −M r−p+1
r,λ vr(x), x ∈ Ω,

| ∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω,

(4.1)

and |vr | ∞ = 1. Thanks to Lemma 9 we have 0 < M r−p+1
r,λ � Mp,λ, when p − 1 < r < p, so that by the

estimates in [10] we obtain that vr is bounded in C1,β(Ω) for certain β ∈ (0, 1). Thus for every sequence
rn → (p − 1)+ we may extract a subsequence, which will be relabeled as vn, such that

vn → v
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in C1(Ω). We may also assume that

M rn −p+1
rn,λ → θ

for some real number θ. Passing to the limit in the weak formulation of (4.1) we arrive at

⎧⎨
⎩

−Δpv(x) + avp−1(x) = −θvp−1(x), x ∈ Ω,

| ∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω,

with v � 0, |v| ∞ = 1 and thus v > 0 in Ω. Hence, thanks to the uniqueness assertion in Theorem 1 we
have that

θ = −μ1,p(λ),

while

v = φ1(λ),

where φ1(λ) stands for the positive eigenfunction associated to μ1,p with supΩ φ1(λ) = 1. It follows that
vn → φ1(λ) in C1(Ω).

By writing

un = Mrn,λvn =
(

−μ1,p(λ) + o(1)
)1/(rn −p+1)(

φ1(λ) + o(1)
)
,

it is clear that assertions (a) and (b) follow immediately from the fact that 0 < −μ1,p(λ) < 1 if λ < λ∗,
provided λ∗ exists (i.e., λ1,p(a) > −1) while −μ1,p(λ) > 1 either if λ > λ∗ (λ1,p(a) > −1) or for all λ
(λ1,p(a) � −1).

When λ = λ∗, we have μ1,p = −1, so that M r−p+1
r,λ → 1 as r → (p − 1)+. However, no further

information on Mr,λ is available from this convergence and a more subtle analysis is required.
Now, for technical reasons we restrict ourselves to the case of linear diffusion, that is, we consider

p = 2. Multiplying (4.1) by φ1 and integrating in Ω leads to

∫
Ω

φ1
(
M r−1

r,λ vr
r − vr

)
dx = 0.

We may rewrite this equality as

M r−1
r,λ − 1

r − 1

∫
Ω

φ1v
r
r dx =

∫
Ω

φ1vr
1 − vr−1

r

r − 1
dx. (4.2)

Taking into account that vr → φ1 uniformly in Ω, and since φ1 > 0 in Ω, we obtain

vr
1 − vr−1

r

r − 1
→ −φ1 log φ1
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uniformly in Ω and hence, from (4.2),

lim
r→1+

M r−1
r,λ − 1

r − 1
= −

∫
Ω φ2

1 log φ1 dx∫
Ω φ2

1 dx
= log A, (4.3)

where A is given by (1.14). Now, since from (4.3) we have

Mr,λ = exp
{

1
r − 1

log
(
1 + (log A)(r − 1) + o(r − 1)

)}

then we obtain

lim
r→1+

Mr,λ = A,

as was to be shown. The proof is finished. �

Now we deal with the limit as r → ∞.

Proof of Theorem 6. Since a = 0 we consider the problem

⎧⎨
⎩

Δpu(x) = ur(x), x ∈ Ω,

| ∇u|p−2 ∂u

∂ν
(x) = λup−1(x), x ∈ ∂Ω.

(4.4)

To obtain the asymptotic behavior of ur,λ as r → ∞ we construct suitable sub- and super-solutions. To
get a sub-solution we pick ψ ∈ W 1,p(Ω) ∩ C1,β(Ω) the solution to

{ −Δpu(x) = 1, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

(4.5)

The strong maximum principle [15] yields ψ > 0 in Ω while

c1 � − | ∇ψ|p−2 ∂ψ

∂ν
� c2 on ∂Ω

for some positive constants c1, c2.
We look for a sub-solution u under the form

u = A(ψ + γ)−α, α =
p

r − p + 1
, (4.6)

where positive constants A, γ must be found. The condition

| ∇u|p−2 ∂u

∂ν
� λup−1
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on ∂Ω is furnished by the choice γ = γ− with

γ− =
(

c2

λ

)1/(p−1)

α.

On the other hand, in order that u be a sub-solution it is required that

αp−1{(p − 1)(α + 1)| ∇ψ|p + (ψ + γ)
}

� Ar−p+1

in Ω. Setting

Φ = (p − 1)| ∇ψ|p + ψ,

such inequality is satisfied if A = A− with

A− = α(p−1)/(r−p+1)
(

inf
Ω

Φ
)1/(r−p+1)

.

A super-solution of the form

u = A+(ψ + γ+)−α,

satisfying

u � u

in Ω is found by choosing the values:

γ+ =
(

c1

λ

)1/(p−1)

α, A+ = α(p−1)/(r−p+1)
(

2 sup
Ω

Φ
)1/(r−p+1)

,

provided that r is conveniently large (notice that γ+ → 0 as r → ∞).
Finally, since

A−
(
ψ(x) + γ−

)−α � ur,λ(x) � A+

(
ψ(x) + γ+

)−α
(4.7)

in Ω for large r we conclude that ur,λ → 1 uniformly in Ω as r → ∞. �

Now we use the previous construction to conclude the proof of Theorem 4.

Proof of Theorem 4(iv). We first briefly discuss the existence of solutions to (1.12). Observe that the
problem

{
−Δpu + aup−1 = −ur, x ∈ Ω,
u = M , x ∈ ∂Ω,
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has a unique positive solution u = uM ∈ C1,β(Ω) for every M > 0. In fact u = 0, u = Bφ1(λ0) with
B > 0 large can be used as a sub- and a super-solution provided μ1,p(λ0) < 0. Uniqueness, which is
achieved by the same ideas as in Theorem 1, implies that uM is increasing with M .

On the other hand, local uniform C1,β bounds for uM follow from the estimate

uM � vB , x ∈ B

for every ball B ⊂ B ⊂ Ω, where v = vB is the minimal solution to

{
−Δpv(x) = |a| ∞vp−1(x) − vr(x), x ∈ B,
v = ∞, x ∈ ∂B.

The existence of vB is well documented (see, for instance, [13] and [7], Theorem 3). In conclusion,

uM → U

in C1(Ω) where U defines a weak solution to (1.12) in the sense that U → ∞ as dist(x, ∂Ω) → 0.
We now claim that, for fixed r > p − 1,

ur,λ → ∞

uniformly on ∂Ω as λ → ∞. Since uM � ur,λ � U in Ω for λ large we immediately achieve (1.13).
To show the claim we construct a suitable sub-solution uλ to the auxiliary problem

⎧⎪⎪⎨
⎪⎪⎩

−Δpu(x) + aup−1(x) = −ur(x), x ∈ Uη,

| ∇u|p−2 ∂u

∂ν
(x) = λup−1(x), x ∈ ∂Ω,

u(x) = ur,λ(x), dist(x, ∂Ω) = η,

(4.8)

where Uη = {x ∈ Ω: dist(x, ∂Ω) < η} and η > 0 is small. Notice that u = ur,λ is its unique solution
(check once more the uniqueness proof in Theorem 1).

Following the preceding proof, a sub-solution of the form

uλ = A(ψ + γ)−α,

with ψ and α as before, can be found in Uη by choosing

γ = α

{
sup∂Ω | ∇ψ|p−2(−∂ψ/∂ν)

λ

}1/(p−1)

and taking λ � λ0, η � η0 and 0 < A � A0. Remark that

ur,λ � ur,λ0 � Aψ−α � uλ

on dist(x, ∂Ω) = η for all λ � λ0 provided A < A1.
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Now, by using uλ = Bur,λ, B large enough, as a super-solution, Theorem 3 (see Remark 4) implies
in particular that

ur,λ � uλ

for large λ. This shows the claim. �

Proof of Theorem 7. As observed in Theorem 4, sub- and super-solutions to (1.1) of the form u =
Aφ1(λ), u = Bφ1(λ) can be found. Thus one arrives at

(
−μ1,p(λ)

)1/(r−p+1)
φ1(λ)(x) � ur,λ(x) �

(
−μ1,p(λ)

)1/(r−p+1) φ1(λ)(x)
infΩ φ1(λ)

for all r > p − 1. This implies that

lim
r→∞

ur,λ(x) � φ1(λ)(x), x ∈ Ω.

On the other hand, as in the proof of Theorem 6, a super-solution to (1.1) can be obtained in the form

u = A
(
ψ(x) + γ

)−α
,

with α, γ = γ+ and ψ as in that proof, while A is chosen such that

Ar−p+1 = 1 + |a| ∞
(

sup
Ω

ψ + 1
)p

for sufficiently large r. From the inequality ur,λ � u one easily gets,

lim
r→∞

ur,λ(x) � 1.

A combination of these inequalities also gives

lim
r→∞

sup
Ω

ur,λ = 1.

To study the behavior of sup ur−p+1
r,λ we first consider a = 0 in (1.1) but p > 1 arbitrary. In this case,

inequality (4.7) directly leads to

ur,λ
r−p+1(x) � Ar−p+1

− γ−p
−

on ∂Ω. Since γ− ∼ Cα as r → ∞ such inequality says that

lim
r→∞

sup
Ω

(ur,λ)r−p+1 = ∞. (4.9)
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To conclude with the case a ∈ L∞(Ω) arbitrary with λ large, we use an argument inspired in [3].
Let us begin assuming a > 0 in Ω and assume, arguing by contradiction, that sup ur−p+1

r,λ is bounded.
Choose rn → ∞ and set un = urn,λ, tn = sup un, un = tnvn. Then vn solves

⎧⎨
⎩

−Δpvn(x) + avp−1
n (x) = −urn−p+1

n vp−1
n (x), x ∈ Ω,

| ∇vn|p−2 ∂v

∂ν
(x) = λvp−1

n (x), x ∈ ∂Ω.

Now, passing to a subsequence, vrn −p+1
n ⇀ h in Lq(Ω) for a nonnegative h ∈ L∞(Ω) and a conveniently

large chosen q > 1. On the other hand, the estimates in [10] permit us showing that vn → v in C1,γ(Ω)
where v is positive, |v| ∞ = 1 and solves

⎧⎨
⎩

−Δpv(x) + avp−1(x) = −hvp−1(x), x ∈ Ω,

| ∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω.

Since 0 < v(x) � 1 in Ω and v is p-subharmonic it follows that v(x) < 1 for all x ∈ Ω. Otherwise,
v = 1 and from the equation a + h = 0 in Ω what is impossible. However, v < 1 implies h = 0 in Ω.
Hence, v solves

⎧⎨
⎩

−Δpv(x) + avp−1(x) = 0, x ∈ Ω,

| ∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω.

But this implies μ1(λ) = 0 which contradicts the existence of a positive solution to (1.1) (Theorem 1).
For an arbitrary a ∈ L∞(Ω), not necessarily positive let u = ũr,λ be the solution to (1.1) with a

replaced by |a| ∞ > 0 and notice that

ur,λ � ũr,λ.

The conclusion follows from the fact that ũr,λ satisfies (4.9). �
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